Trigonometric Functions#

class sage.functions.trig.Function_arccos#

Bases: sage.symbolic.function.GinacFunction

The arccosine function.

EXAMPLES:

sage: arccos(0.5)
1.04719755119660
sage: arccos(1/2)
1/3*pi
sage: arccos(1 + 1.0*I)
0.904556894302381 - 1.06127506190504*I
sage: arccos(3/4).n(100)
0.72273424781341561117837735264

We can delay evaluation using the hold parameter:

sage: arccos(0,hold=True)
arccos(0)

To then evaluate again, we currently must use Maxima via sage.symbolic.expression.Expression.simplify():

sage: a = arccos(0,hold=True); a.simplify()
1/2*pi

conjugate(arccos(x))==arccos(conjugate(x)), unless on the branch cuts, which run along the real axis outside the interval [-1, +1].:

sage: conjugate(arccos(x))
conjugate(arccos(x))
sage: var('y', domain='positive')
y
sage: conjugate(arccos(y))
conjugate(arccos(y))
sage: conjugate(arccos(y+I))
conjugate(arccos(y + I))
sage: conjugate(arccos(1/16))
arccos(1/16)
sage: conjugate(arccos(2))
conjugate(arccos(2))
sage: conjugate(arccos(-2))
pi - conjugate(arccos(2))
class sage.functions.trig.Function_arccot#

Bases: sage.symbolic.function.GinacFunction

The arccotangent function.

EXAMPLES:

sage: arccot(1/2)
arccot(1/2)
sage: RDF(arccot(1/2))  # abs tol 2e-16
1.1071487177940906
sage: arccot(1 + I)
arccot(I + 1)
sage: arccot(1/2).n(100)
1.1071487177940905030170654602
sage: float(arccot(1/2))  # abs tol 2e-16
1.1071487177940906
sage: bool(diff(acot(x), x) == -diff(atan(x), x))
True
sage: diff(acot(x), x)
-1/(x^2 + 1)

We can delay evaluation using the hold parameter:

sage: arccot(1,hold=True)
arccot(1)

To then evaluate again, we currently must use Maxima via sage.symbolic.expression.Expression.simplify():

sage: a = arccot(1,hold=True); a.simplify()
1/4*pi
class sage.functions.trig.Function_arccsc#

Bases: sage.symbolic.function.GinacFunction

The arccosecant function.

EXAMPLES:

sage: arccsc(2)
arccsc(2)
sage: RDF(arccsc(2))  # rel tol 1e-15
0.5235987755982988
sage: arccsc(2).n(100)
0.52359877559829887307710723055
sage: float(arccsc(2))
0.52359877559829...
sage: arccsc(1 + I)
arccsc(I + 1)
sage: diff(acsc(x), x)
-1/(sqrt(x^2 - 1)*x)
sage: arccsc(x)._sympy_()
acsc(x)

We can delay evaluation using the hold parameter:

sage: arccsc(1,hold=True)
arccsc(1)

To then evaluate again, we currently must use Maxima via sage.symbolic.expression.Expression.simplify():

sage: a = arccsc(1,hold=True); a.simplify()
1/2*pi
class sage.functions.trig.Function_arcsec#

Bases: sage.symbolic.function.GinacFunction

The arcsecant function.

EXAMPLES:

sage: arcsec(2)
arcsec(2)
sage: arcsec(2.0)
1.04719755119660
sage: arcsec(2).n(100)
1.0471975511965977461542144611
sage: arcsec(1/2).n(100)
1.3169578969248167086250463473*I
sage: RDF(arcsec(2))  # abs tol 1e-15
1.0471975511965976
sage: arcsec(1 + I)
arcsec(I + 1)
sage: diff(asec(x), x)
1/(sqrt(x^2 - 1)*x)
sage: arcsec(x)._sympy_()
asec(x)

We can delay evaluation using the hold parameter:

sage: arcsec(1,hold=True)
arcsec(1)

To then evaluate again, we currently must use Maxima via sage.symbolic.expression.Expression.simplify():

sage: a = arcsec(1,hold=True); a.simplify()
0
class sage.functions.trig.Function_arcsin#

Bases: sage.symbolic.function.GinacFunction

The arcsine function.

EXAMPLES:

sage: arcsin(0.5)
0.523598775598299
sage: arcsin(1/2)
1/6*pi
sage: arcsin(1 + 1.0*I)
0.666239432492515 + 1.06127506190504*I

We can delay evaluation using the hold parameter:

sage: arcsin(0,hold=True)
arcsin(0)

To then evaluate again, we currently must use Maxima via sage.symbolic.expression.Expression.simplify():

sage: a = arcsin(0,hold=True); a.simplify()
0

conjugate(arcsin(x))==arcsin(conjugate(x)), unless on the branch cuts which run along the real axis outside the interval [-1, +1].:

sage: conjugate(arcsin(x))
conjugate(arcsin(x))
sage: var('y', domain='positive')
y
sage: conjugate(arcsin(y))
conjugate(arcsin(y))
sage: conjugate(arcsin(y+I))
conjugate(arcsin(y + I))
sage: conjugate(arcsin(1/16))
arcsin(1/16)
sage: conjugate(arcsin(2))
conjugate(arcsin(2))
sage: conjugate(arcsin(-2))
-conjugate(arcsin(2))
class sage.functions.trig.Function_arctan#

Bases: sage.symbolic.function.GinacFunction

The arctangent function.

EXAMPLES:

sage: arctan(1/2)
arctan(1/2)
sage: RDF(arctan(1/2))  # rel tol 1e-15
0.46364760900080615
sage: arctan(1 + I)
arctan(I + 1)
sage: arctan(1/2).n(100)
0.46364760900080611621425623146

We can delay evaluation using the hold parameter:

sage: arctan(0,hold=True)
arctan(0)

To then evaluate again, we currently must use Maxima via sage.symbolic.expression.Expression.simplify():

sage: a = arctan(0,hold=True); a.simplify()
0

conjugate(arctan(x))==arctan(conjugate(x)), unless on the branch cuts which run along the imaginary axis outside the interval [-I, +I].:

sage: conjugate(arctan(x))
conjugate(arctan(x))
sage: var('y', domain='positive')
y
sage: conjugate(arctan(y))
arctan(y)
sage: conjugate(arctan(y+I))
conjugate(arctan(y + I))
sage: conjugate(arctan(1/16))
arctan(1/16)
sage: conjugate(arctan(-2*I))
conjugate(arctan(-2*I))
sage: conjugate(arctan(2*I))
conjugate(arctan(2*I))
sage: conjugate(arctan(I/2))
arctan(-1/2*I)
class sage.functions.trig.Function_arctan2#

Bases: sage.symbolic.function.GinacFunction

The modified arctangent function.

Returns the arc tangent (measured in radians) of \(y/x\), where unlike arctan(y/x), the signs of both x and y are considered. In particular, this function measures the angle of a ray through the origin and \((x,y)\), with the positive \(x\)-axis the zero mark, and with output angle \(\theta\) being between \(-\pi<\theta<=\pi\).

Hence, arctan2(y,x) = arctan(y/x) only for \(x>0\). One may consider the usual arctan to measure angles of lines through the origin, while the modified function measures rays through the origin.

Note that the \(y\)-coordinate is by convention the first input.

EXAMPLES:

Note the difference between the two functions:

sage: arctan2(1,-1)
3/4*pi
sage: arctan(1/-1)
-1/4*pi

This is consistent with Python and Maxima:

sage: maxima.atan2(1,-1)
(3*%pi)/4
sage: math.atan2(1,-1)
2.356194490192345

More examples:

sage: arctan2(1,0)
1/2*pi
sage: arctan2(2,3)
arctan(2/3)
sage: arctan2(-1,-1)
-3/4*pi

Of course we can approximate as well:

sage: arctan2(-1/2,1).n(100)
-0.46364760900080611621425623146
sage: arctan2(2,3).n(100)
0.58800260354756755124561108063

We can delay evaluation using the hold parameter:

sage: arctan2(-1/2,1,hold=True)
arctan2(-1/2, 1)

To then evaluate again, we currently must use Maxima via sage.symbolic.expression.Expression.simplify():

sage: arctan2(-1/2,1,hold=True).simplify()
-arctan(1/2)

The function also works with numpy arrays as input:

sage: import numpy
sage: a = numpy.linspace(1, 3, 3)
sage: b = numpy.linspace(3, 6, 3)
sage: atan2(a, b)
array([0.32175055, 0.41822433, 0.46364761])

sage: atan2(1,a)
array([0.78539816, 0.46364761, 0.32175055])

sage: atan2(a, 1)
array([0.78539816, 1.10714872, 1.24904577])
class sage.functions.trig.Function_cos#

Bases: sage.symbolic.function.GinacFunction

The cosine function.

EXAMPLES:

sage: cos(pi)
-1
sage: cos(x).subs(x==pi)
-1
sage: cos(2).n(100)
-0.41614683654714238699756822950
sage: loads(dumps(cos))
cos
sage: cos(x)._sympy_()
cos(x)

We can prevent evaluation using the hold parameter:

sage: cos(0,hold=True)
cos(0)

To then evaluate again, we currently must use Maxima via sage.symbolic.expression.Expression.simplify():

sage: a = cos(0,hold=True); a.simplify()
1

If possible, the argument is also reduced modulo the period length \(2\pi\), and well-known identities are directly evaluated:

sage: k = var('k', domain='integer')
sage: cos(1 + 2*k*pi)
cos(1)
sage: cos(k*pi)
cos(pi*k)
sage: cos(pi/3 + 2*k*pi)
1/2
class sage.functions.trig.Function_cot#

Bases: sage.symbolic.function.GinacFunction

The cotangent function.

EXAMPLES:

sage: cot(pi/4)
1
sage: RR(cot(pi/4))
1.00000000000000
sage: cot(1/2)
cot(1/2)
sage: cot(0.5)
1.83048772171245

sage: latex(cot(x))
\cot\left(x\right)
sage: cot(x)._sympy_()
cot(x)

We can prevent evaluation using the hold parameter:

sage: cot(pi/4,hold=True)
cot(1/4*pi)

To then evaluate again, we currently must use Maxima via sage.symbolic.expression.Expression.simplify():

sage: a = cot(pi/4,hold=True); a.simplify()
1

EXAMPLES:

sage: cot(pi/4)
1
sage: cot(x).subs(x==pi/4)
1
sage: cot(pi/7)
cot(1/7*pi)
sage: cot(x)
cot(x)

sage: n(cot(pi/4),100)
1.0000000000000000000000000000
sage: float(cot(1))
0.64209261593433...
sage: bool(diff(cot(x), x) == diff(1/tan(x), x))
True
sage: diff(cot(x), x)
-cot(x)^2 - 1
class sage.functions.trig.Function_csc#

Bases: sage.symbolic.function.GinacFunction

The cosecant function.

EXAMPLES:

sage: csc(pi/4)
sqrt(2)
sage: csc(x).subs(x==pi/4)
sqrt(2)
sage: csc(pi/7)
csc(1/7*pi)
sage: csc(x)
csc(x)
sage: RR(csc(pi/4))
1.41421356237310
sage: n(csc(pi/4),100)
1.4142135623730950488016887242
sage: float(csc(pi/4))
1.4142135623730951
sage: csc(1/2)
csc(1/2)
sage: csc(0.5)
2.08582964293349

sage: bool(diff(csc(x), x) == diff(1/sin(x), x))
True
sage: diff(csc(x), x)
-cot(x)*csc(x)
sage: latex(csc(x))
\csc\left(x\right)
sage: csc(x)._sympy_()
csc(x)

We can prevent evaluation using the hold parameter:

sage: csc(pi/4,hold=True)
csc(1/4*pi)

To then evaluate again, we currently must use Maxima via sage.symbolic.expression.Expression.simplify():

sage: a = csc(pi/4,hold=True); a.simplify()
sqrt(2)
class sage.functions.trig.Function_sec#

Bases: sage.symbolic.function.GinacFunction

The secant function.

EXAMPLES:

sage: sec(pi/4)
sqrt(2)
sage: sec(x).subs(x==pi/4)
sqrt(2)
sage: sec(pi/7)
sec(1/7*pi)
sage: sec(x)
sec(x)
sage: RR(sec(pi/4))
1.41421356237310
sage: n(sec(pi/4),100)
1.4142135623730950488016887242
sage: float(sec(pi/4))
1.4142135623730951
sage: sec(1/2)
sec(1/2)
sage: sec(0.5)
1.13949392732455

sage: bool(diff(sec(x), x) == diff(1/cos(x), x))
True
sage: diff(sec(x), x)
sec(x)*tan(x)
sage: latex(sec(x))
\sec\left(x\right)
sage: sec(x)._sympy_()
sec(x)

We can prevent evaluation using the hold parameter:

sage: sec(pi/4,hold=True)
sec(1/4*pi)

To then evaluate again, we currently must use Maxima via sage.symbolic.expression.Expression.simplify():

sage: a = sec(pi/4,hold=True); a.simplify()
sqrt(2)
class sage.functions.trig.Function_sin#

Bases: sage.symbolic.function.GinacFunction

The sine function.

EXAMPLES:

sage: sin(0)
0
sage: sin(x).subs(x==0)
0
sage: sin(2).n(100)
0.90929742682568169539601986591
sage: loads(dumps(sin))
sin
sage: sin(x)._sympy_()
sin(x)

We can prevent evaluation using the hold parameter:

sage: sin(0,hold=True)
sin(0)

To then evaluate again, we currently must use Maxima via sage.symbolic.expression.Expression.simplify():

sage: a = sin(0,hold=True); a.simplify()
0

If possible, the argument is also reduced modulo the period length \(2\pi\), and well-known identities are directly evaluated:

sage: k = var('k', domain='integer')
sage: sin(1 + 2*k*pi)
sin(1)
sage: sin(k*pi)
0
class sage.functions.trig.Function_tan#

Bases: sage.symbolic.function.GinacFunction

The tangent function.

EXAMPLES:

sage: tan(pi)
0
sage: tan(3.1415)
-0.0000926535900581913
sage: tan(3.1415/4)
0.999953674278156
sage: tan(pi/4)
1
sage: tan(1/2)
tan(1/2)
sage: RR(tan(1/2))
0.546302489843790

We can prevent evaluation using the hold parameter:

sage: tan(pi/4,hold=True)
tan(1/4*pi)

To then evaluate again, we currently must use Maxima via sage.symbolic.expression.Expression.simplify():

sage: a = tan(pi/4,hold=True); a.simplify()
1

If possible, the argument is also reduced modulo the period length \(\pi\), and well-known identities are directly evaluated:

sage: k = var('k', domain='integer')
sage: tan(1 + 2*k*pi)
tan(1)
sage: tan(k*pi)
0