How to change coordinates#
This tutorial introduces some vector calculus capabilities of SageMath within the 3-dimensional Euclidean space. The corresponding tools have been developed via the SageManifolds project.
The tutorial is also available as a Jupyter notebook, either
passive (nbviewer
)
or interactive (binder
).
Starting from Cartesian coordinates#
In this tutorial, we choose to start from the Cartesian coordinates \((x,y,z)\). Hence, we declare the 3-dimensional Euclidean space \(\mathbb{E}^3\) as:
sage: E.<x,y,z> = EuclideanSpace()
sage: E
Euclidean space E^3
>>> from sage.all import *
>>> E = EuclideanSpace(names=('x', 'y', 'z',)); (x, y, z,) = E._first_ngens(3)
>>> E
Euclidean space E^3
By default, i.e. without the optional argument coordinates
in
EuclideanSpace
, \(\mathbb{E}^3\) is initialized with the chart of
Cartesian coordinates:
sage: E.atlas()
[Chart (E^3, (x, y, z))]
>>> from sage.all import *
>>> E.atlas()
[Chart (E^3, (x, y, z))]
See the tutorial How to perform vector calculus in curvilinear coordinates for examples of initialization of the Euclidean space with spherical coordinates or cylindrical coordinates instead of the Cartesian ones.
Let us denote by cartesian
the chart of Cartesian coordinates:
sage: cartesian = E.cartesian_coordinates()
sage: cartesian
Chart (E^3, (x, y, z))
>>> from sage.all import *
>>> cartesian = E.cartesian_coordinates()
>>> cartesian
Chart (E^3, (x, y, z))
The access to the individual coordinates is performed via the square bracket operator:
sage: cartesian[1]
x
sage: cartesian[:]
(x, y, z)
>>> from sage.all import *
>>> cartesian[Integer(1)]
x
>>> cartesian[:]
(x, y, z)
Thanks to use of <x,y,z>
when declaring E
, the Python variables x
,
y
and z
have been created to store the coordinates \((x,y,z)\) as
symbolic expressions. There is no need to declare them via var()
, i.e. to
type x, y, z = var('x y z')
; they are immediately available:
sage: y is cartesian[2]
True
sage: type(y)
<class 'sage.symbolic.expression.Expression'>
>>> from sage.all import *
>>> y is cartesian[Integer(2)]
True
>>> type(y)
<class 'sage.symbolic.expression.Expression'>
Each of the Cartesian coordinates spans the entire real line:
sage: cartesian.coord_range()
x: (-oo, +oo); y: (-oo, +oo); z: (-oo, +oo)
>>> from sage.all import *
>>> cartesian.coord_range()
x: (-oo, +oo); y: (-oo, +oo); z: (-oo, +oo)
Being the only coordinate chart created so far, cartesian
is the default
chart on E
:
sage: cartesian is E.default_chart()
True
>>> from sage.all import *
>>> cartesian is E.default_chart()
True
\(\mathbb{E}^3\) is endowed with the orthonormal vector frame \((e_x, e_y, e_z)\) associated with Cartesian coordinates:
sage: E.frames()
[Coordinate frame (E^3, (e_x,e_y,e_z))]
>>> from sage.all import *
>>> E.frames()
[Coordinate frame (E^3, (e_x,e_y,e_z))]
Let us denote it by cartesian_frame
:
sage: cartesian_frame = E.cartesian_frame()
sage: cartesian_frame
Coordinate frame (E^3, (e_x,e_y,e_z))
sage: cartesian_frame is E.default_frame()
True
>>> from sage.all import *
>>> cartesian_frame = E.cartesian_frame()
>>> cartesian_frame
Coordinate frame (E^3, (e_x,e_y,e_z))
>>> cartesian_frame is E.default_frame()
True
Each element of this frame is a unit vector field; for instance, we have \(e_x\cdot e_x = 1\):
sage: e_x = cartesian_frame[1]
sage: e_x
Vector field e_x on the Euclidean space E^3
sage: e_x.dot(e_x).expr()
1
>>> from sage.all import *
>>> e_x = cartesian_frame[Integer(1)]
>>> e_x
Vector field e_x on the Euclidean space E^3
>>> e_x.dot(e_x).expr()
1
as well as \(e_x\cdot e_y = 0\):
sage: e_y = cartesian_frame[2]
sage: e_x.dot(e_y).expr()
0
>>> from sage.all import *
>>> e_y = cartesian_frame[Integer(2)]
>>> e_x.dot(e_y).expr()
0
Introducing spherical coordinates#
Spherical coordinates are introduced by:
sage: spherical.<r,th,ph> = E.spherical_coordinates()
sage: spherical
Chart (E^3, (r, th, ph))
>>> from sage.all import *
>>> spherical = E.spherical_coordinates(names=('r', 'th', 'ph',)); (r, th, ph,) = spherical._first_ngens(3)
>>> spherical
Chart (E^3, (r, th, ph))
We have:
sage: spherical[:]
(r, th, ph)
sage: spherical.coord_range()
r: (0, +oo); th: (0, pi); ph: [0, 2*pi] (periodic)
>>> from sage.all import *
>>> spherical[:]
(r, th, ph)
>>> spherical.coord_range()
r: (0, +oo); th: (0, pi); ph: [0, 2*pi] (periodic)
\(\mathbb{E}^3\) is now endowed with two coordinate charts:
sage: E.atlas()
[Chart (E^3, (x, y, z)), Chart (E^3, (r, th, ph))]
>>> from sage.all import *
>>> E.atlas()
[Chart (E^3, (x, y, z)), Chart (E^3, (r, th, ph))]
The change-of-coordinate formulas have been automatically implemented during
the above call E.spherical_coordinates()
:
sage: E.coord_change(spherical, cartesian).display()
x = r*cos(ph)*sin(th)
y = r*sin(ph)*sin(th)
z = r*cos(th)
sage: E.coord_change(cartesian, spherical).display()
r = sqrt(x^2 + y^2 + z^2)
th = arctan2(sqrt(x^2 + y^2), z)
ph = arctan2(y, x)
>>> from sage.all import *
>>> E.coord_change(spherical, cartesian).display()
x = r*cos(ph)*sin(th)
y = r*sin(ph)*sin(th)
z = r*cos(th)
>>> E.coord_change(cartesian, spherical).display()
r = sqrt(x^2 + y^2 + z^2)
th = arctan2(sqrt(x^2 + y^2), z)
ph = arctan2(y, x)
These formulas are automatically used if we ask to plot the grid of spherical coordinates in terms of Cartesian coordinates:
sage: spherical.plot(cartesian, color={r:'red', th:'green', ph:'orange'})
Graphics3d Object
>>> from sage.all import *
>>> spherical.plot(cartesian, color={r:'red', th:'green', ph:'orange'})
Graphics3d Object
Note that
the red lines are those along which \(r\) varies, while \((\theta,\phi)\) are kept fixed;
the grid lines are those along which \(\theta\) varies, while \((r,\phi)\) are kept fixed;
the orange lines are those along which \(\phi\) varies, while \((r,\theta)\) are kept fixed.
For customizing the plot, see the list of options in the documentation of
plot()
. For instance, we may draw the
spherical coordinates in the plane \(\theta=\pi/2\) in terms of the coordinates
\((x, y)\):
sage: spherical.plot(cartesian, fixed_coords={th: pi/2}, ambient_coords=(x,y),
....: color={r:'red', th:'green', ph:'orange'})
Graphics object consisting of 18 graphics primitives
>>> from sage.all import *
>>> spherical.plot(cartesian, fixed_coords={th: pi/Integer(2)}, ambient_coords=(x,y),
... color={r:'red', th:'green', ph:'orange'})
Graphics object consisting of 18 graphics primitives
Similarly the grid of spherical coordinates in the half-plane \(\phi=0\) drawn in terms of the coordinates \((x, z)\) is obtained via:
sage: spherical.plot(cartesian, fixed_coords={ph: 0}, ambient_coords=(x,z),
....: color={r:'red', th:'green', ph:'orange'})
Graphics object consisting of 18 graphics primitives
>>> from sage.all import *
>>> spherical.plot(cartesian, fixed_coords={ph: Integer(0)}, ambient_coords=(x,z),
... color={r:'red', th:'green', ph:'orange'})
Graphics object consisting of 18 graphics primitives
Relations between the Cartesian and spherical vector frames#
At this stage, \(\mathbb{E}^3\) is endowed with three vector frames:
sage: E.frames()
[Coordinate frame (E^3, (e_x,e_y,e_z)),
Coordinate frame (E^3, (∂/∂r,∂/∂th,∂/∂ph)),
Vector frame (E^3, (e_r,e_th,e_ph))]
>>> from sage.all import *
>>> E.frames()
[Coordinate frame (E^3, (e_x,e_y,e_z)),
Coordinate frame (E^3, (∂/∂r,∂/∂th,∂/∂ph)),
Vector frame (E^3, (e_r,e_th,e_ph))]
The second one is the coordinate frame \(\left(\frac{\partial}{\partial r},
\frac{\partial}{\partial\theta}, \frac{\partial}{\partial \phi}\right)\) of
spherical coordinates, while the third one is the standard orthonormal frame
\((e_r,e_\theta,e_\phi)\) associated with spherical coordinates. For Cartesian
coordinates, the coordinate frame and the orthonormal frame coincide: it is
\((e_x,e_y,e_z)\). For spherical coordinates, the orthonormal frame is returned
by the method
spherical_frame()
:
sage: spherical_frame = E.spherical_frame()
sage: spherical_frame
Vector frame (E^3, (e_r,e_th,e_ph))
>>> from sage.all import *
>>> spherical_frame = E.spherical_frame()
>>> spherical_frame
Vector frame (E^3, (e_r,e_th,e_ph))
We may check that it is an orthonormal frame, i.e. that it obeys \(e_i\cdot e_j = \delta_{ij}\):
sage: es = spherical_frame
sage: [[es[i].dot(es[j]).expr() for j in E.irange()] for i in E.irange()]
[[1, 0, 0], [0, 1, 0], [0, 0, 1]]
>>> from sage.all import *
>>> es = spherical_frame
>>> [[es[i].dot(es[j]).expr() for j in E.irange()] for i in E.irange()]
[[1, 0, 0], [0, 1, 0], [0, 0, 1]]
Via the method display
, we may express the orthonormal spherical frame in
terms of the Cartesian one:
sage: for vec in spherical_frame:
....: vec.display(cartesian_frame, spherical)
e_r = cos(ph)*sin(th) e_x + sin(ph)*sin(th) e_y + cos(th) e_z
e_th = cos(ph)*cos(th) e_x + cos(th)*sin(ph) e_y - sin(th) e_z
e_ph = -sin(ph) e_x + cos(ph) e_y
>>> from sage.all import *
>>> for vec in spherical_frame:
... vec.display(cartesian_frame, spherical)
e_r = cos(ph)*sin(th) e_x + sin(ph)*sin(th) e_y + cos(th) e_z
e_th = cos(ph)*cos(th) e_x + cos(th)*sin(ph) e_y - sin(th) e_z
e_ph = -sin(ph) e_x + cos(ph) e_y
The reverse is:
sage: for vec in cartesian_frame:
....: vec.display(spherical_frame, spherical)
e_x = cos(ph)*sin(th) e_r + cos(ph)*cos(th) e_th - sin(ph) e_ph
e_y = sin(ph)*sin(th) e_r + cos(th)*sin(ph) e_th + cos(ph) e_ph
e_z = cos(th) e_r - sin(th) e_th
>>> from sage.all import *
>>> for vec in cartesian_frame:
... vec.display(spherical_frame, spherical)
e_x = cos(ph)*sin(th) e_r + cos(ph)*cos(th) e_th - sin(ph) e_ph
e_y = sin(ph)*sin(th) e_r + cos(th)*sin(ph) e_th + cos(ph) e_ph
e_z = cos(th) e_r - sin(th) e_th
We may also express the orthonormal frame \((e_r,e_\theta,e_\phi)\) in terms on
the coordinate frame \(\left(\frac{\partial}{\partial r},
\frac{\partial}{\partial\theta}, \frac{\partial}{\partial \phi}\right)\) (the
latter being returned by the method
frame()
acting on the
chart spherical
):
sage: for vec in spherical_frame:
....: vec.display(spherical.frame(), spherical)
e_r = ∂/∂r
e_th = 1/r ∂/∂th
e_ph = 1/(r*sin(th)) ∂/∂ph
>>> from sage.all import *
>>> for vec in spherical_frame:
... vec.display(spherical.frame(), spherical)
e_r = ∂/∂r
e_th = 1/r ∂/∂th
e_ph = 1/(r*sin(th)) ∂/∂ph
Introducing cylindrical coordinates#
Cylindrical coordinates are introduced in a way similar to spherical coordinates:
sage: cylindrical.<rh,ph,z> = E.cylindrical_coordinates()
sage: cylindrical
Chart (E^3, (rh, ph, z))
>>> from sage.all import *
>>> cylindrical = E.cylindrical_coordinates(names=('rh', 'ph', 'z',)); (rh, ph, z,) = cylindrical._first_ngens(3)
>>> cylindrical
Chart (E^3, (rh, ph, z))
We have:
sage: cylindrical[:]
(rh, ph, z)
sage: rh is cylindrical[1]
True
sage: cylindrical.coord_range()
rh: (0, +oo); ph: [0, 2*pi] (periodic); z: (-oo, +oo)
>>> from sage.all import *
>>> cylindrical[:]
(rh, ph, z)
>>> rh is cylindrical[Integer(1)]
True
>>> cylindrical.coord_range()
rh: (0, +oo); ph: [0, 2*pi] (periodic); z: (-oo, +oo)
\(\mathbb{E}^3\) is now endowed with three coordinate charts:
sage: E.atlas()
[Chart (E^3, (x, y, z)), Chart (E^3, (r, th, ph)), Chart (E^3, (rh, ph, z))]
>>> from sage.all import *
>>> E.atlas()
[Chart (E^3, (x, y, z)), Chart (E^3, (r, th, ph)), Chart (E^3, (rh, ph, z))]
The transformations linking the cylindrical coordinates to the Cartesian ones are:
sage: E.coord_change(cylindrical, cartesian).display()
x = rh*cos(ph)
y = rh*sin(ph)
z = z
sage: E.coord_change(cartesian, cylindrical).display()
rh = sqrt(x^2 + y^2)
ph = arctan2(y, x)
z = z
>>> from sage.all import *
>>> E.coord_change(cylindrical, cartesian).display()
x = rh*cos(ph)
y = rh*sin(ph)
z = z
>>> E.coord_change(cartesian, cylindrical).display()
rh = sqrt(x^2 + y^2)
ph = arctan2(y, x)
z = z
There are now five vector frames defined on \(\mathbb{E}^3\):
sage: E.frames()
[Coordinate frame (E^3, (e_x,e_y,e_z)),
Coordinate frame (E^3, (∂/∂r,∂/∂th,∂/∂ph)),
Vector frame (E^3, (e_r,e_th,e_ph)),
Coordinate frame (E^3, (∂/∂rh,∂/∂ph,∂/∂z)),
Vector frame (E^3, (e_rh,e_ph,e_z))]
>>> from sage.all import *
>>> E.frames()
[Coordinate frame (E^3, (e_x,e_y,e_z)),
Coordinate frame (E^3, (∂/∂r,∂/∂th,∂/∂ph)),
Vector frame (E^3, (e_r,e_th,e_ph)),
Coordinate frame (E^3, (∂/∂rh,∂/∂ph,∂/∂z)),
Vector frame (E^3, (e_rh,e_ph,e_z))]
The orthonormal frame associated with cylindrical coordinates is \((e_\rho, e_\phi, e_z)\):
sage: cylindrical_frame = E.cylindrical_frame()
sage: cylindrical_frame
Vector frame (E^3, (e_rh,e_ph,e_z))
>>> from sage.all import *
>>> cylindrical_frame = E.cylindrical_frame()
>>> cylindrical_frame
Vector frame (E^3, (e_rh,e_ph,e_z))
We may check that it is an orthonormal frame:
sage: ec = cylindrical_frame
sage: [[ec[i].dot(ec[j]).expr() for j in E.irange()] for i in E.irange()]
[[1, 0, 0], [0, 1, 0], [0, 0, 1]]
>>> from sage.all import *
>>> ec = cylindrical_frame
>>> [[ec[i].dot(ec[j]).expr() for j in E.irange()] for i in E.irange()]
[[1, 0, 0], [0, 1, 0], [0, 0, 1]]
and express it in terms of the Cartesian frame:
sage: for vec in cylindrical_frame:
....: vec.display(cartesian_frame, cylindrical)
e_rh = cos(ph) e_x + sin(ph) e_y
e_ph = -sin(ph) e_x + cos(ph) e_y
e_z = e_z
>>> from sage.all import *
>>> for vec in cylindrical_frame:
... vec.display(cartesian_frame, cylindrical)
e_rh = cos(ph) e_x + sin(ph) e_y
e_ph = -sin(ph) e_x + cos(ph) e_y
e_z = e_z
The reverse is:
sage: for vec in cartesian_frame:
....: vec.display(cylindrical_frame, cylindrical)
e_x = cos(ph) e_rh - sin(ph) e_ph
e_y = sin(ph) e_rh + cos(ph) e_ph
e_z = e_z
>>> from sage.all import *
>>> for vec in cartesian_frame:
... vec.display(cylindrical_frame, cylindrical)
e_x = cos(ph) e_rh - sin(ph) e_ph
e_y = sin(ph) e_rh + cos(ph) e_ph
e_z = e_z
Of course, we may express the orthonormal cylindrical frame in terms of the spherical one:
sage: for vec in cylindrical_frame:
....: vec.display(spherical_frame, spherical)
e_rh = sin(th) e_r + cos(th) e_th
e_ph = e_ph
e_z = cos(th) e_r - sin(th) e_th
>>> from sage.all import *
>>> for vec in cylindrical_frame:
... vec.display(spherical_frame, spherical)
e_rh = sin(th) e_r + cos(th) e_th
e_ph = e_ph
e_z = cos(th) e_r - sin(th) e_th
along with the reverse transformation:
sage: for vec in spherical_frame:
....: vec.display(cylindrical_frame, spherical)
e_r = sin(th) e_rh + cos(th) e_z
e_th = cos(th) e_rh - sin(th) e_z
e_ph = e_ph
>>> from sage.all import *
>>> for vec in spherical_frame:
... vec.display(cylindrical_frame, spherical)
e_r = sin(th) e_rh + cos(th) e_z
e_th = cos(th) e_rh - sin(th) e_z
e_ph = e_ph
The orthonormal frame \((e_\rho,e_\phi,e_z)\) can be expressed in terms on the
coordinate frame \(\left(\frac{\partial}{\partial\rho},
\frac{\partial}{\partial\phi}, \frac{\partial}{\partial z}\right)\) (the latter
being returned by the method
frame()
acting on the
chart cylindrical
):
sage: for vec in cylindrical_frame:
....: vec.display(cylindrical.frame(), cylindrical)
e_rh = ∂/∂rh
e_ph = 1/rh ∂/∂ph
e_z = ∂/∂z
>>> from sage.all import *
>>> for vec in cylindrical_frame:
... vec.display(cylindrical.frame(), cylindrical)
e_rh = ∂/∂rh
e_ph = 1/rh ∂/∂ph
e_z = ∂/∂z
How to evaluate the coordinates of a point in various systems#
Let us introduce a point \(p\in \mathbb{E}^3\) via the generic SageMath
syntax for creating an element from its parent (here
\(\mathbb{E}^3\)), i.e. the call operator ()
, with the
coordinates of the point as the first argument:
sage: p = E((-1, 1,0), chart=cartesian, name='p')
sage: p
Point p on the Euclidean space E^3
>>> from sage.all import *
>>> p = E((-Integer(1), Integer(1),Integer(0)), chart=cartesian, name='p')
>>> p
Point p on the Euclidean space E^3
Actually, since the Cartesian coordinates are the default ones, the argument
chart=cartesian
can be omitted:
sage: p = E((-1, 1,0), name='p')
sage: p
Point p on the Euclidean space E^3
>>> from sage.all import *
>>> p = E((-Integer(1), Integer(1),Integer(0)), name='p')
>>> p
Point p on the Euclidean space E^3
The coordinates of \(p\) in a given coordinate chart are obtained by letting the corresponding chart act on \(p\):
sage: cartesian(p)
(-1, 1, 0)
sage: spherical(p)
(sqrt(2), 1/2*pi, 3/4*pi)
sage: cylindrical(p)
(sqrt(2), 3/4*pi, 0)
>>> from sage.all import *
>>> cartesian(p)
(-1, 1, 0)
>>> spherical(p)
(sqrt(2), 1/2*pi, 3/4*pi)
>>> cylindrical(p)
(sqrt(2), 3/4*pi, 0)
Here some example of a point defined from its spherical coordinates:
sage: q = E((4,pi/3,pi), chart=spherical, name='q')
sage: q
Point q on the Euclidean space E^3
>>> from sage.all import *
>>> q = E((Integer(4),pi/Integer(3),pi), chart=spherical, name='q')
>>> q
Point q on the Euclidean space E^3
We have then:
sage: spherical(q)
(4, 1/3*pi, pi)
sage: cartesian(q)
(-2*sqrt(3), 0, 2)
sage: cylindrical(q)
(2*sqrt(3), pi, 2)
>>> from sage.all import *
>>> spherical(q)
(4, 1/3*pi, pi)
>>> cartesian(q)
(-2*sqrt(3), 0, 2)
>>> cylindrical(q)
(2*sqrt(3), pi, 2)
How to express a scalar field in various coordinate systems#
Let us define a scalar field on \(\mathbb{E}^3\) from its expression in Cartesian coordinates:
sage: f = E.scalar_field(x^2+y^2 - z^2, name='f')
>>> from sage.all import *
>>> f = E.scalar_field(x**Integer(2)+y**Integer(2) - z**Integer(2), name='f')
Note that since the Cartesian coordinates are the default ones, we have not specified them in the above definition. Thanks to the known coordinate transformations, the expression of \(f\) in terms of other coordinates is automatically computed:
sage: f.display()
f: E^3 → ℝ
(x, y, z) ↦ x^2 + y^2 - z^2
(r, th, ph) ↦ -2*r^2*cos(th)^2 + r^2
(rh, ph, z) ↦ rh^2 - z^2
>>> from sage.all import *
>>> f.display()
f: E^3 → ℝ
(x, y, z) ↦ x^2 + y^2 - z^2
(r, th, ph) ↦ -2*r^2*cos(th)^2 + r^2
(rh, ph, z) ↦ rh^2 - z^2
We can limit the output to a single coordinate system:
sage: f.display(cartesian)
f: E^3 → ℝ
(x, y, z) ↦ x^2 + y^2 - z^2
sage: f.display(cylindrical)
f: E^3 → ℝ
(rh, ph, z) ↦ rh^2 - z^2
>>> from sage.all import *
>>> f.display(cartesian)
f: E^3 → ℝ
(x, y, z) ↦ x^2 + y^2 - z^2
>>> f.display(cylindrical)
f: E^3 → ℝ
(rh, ph, z) ↦ rh^2 - z^2
The coordinate expression in a given coordinate system is obtained via the
method expr()
:
sage: f.expr() # expression in the default chart (Cartesian coordinates)
x^2 + y^2 - z^2
sage: f.expr(spherical)
-2*r^2*cos(th)^2 + r^2
sage: f.expr(cylindrical)
rh^2 - z^2
>>> from sage.all import *
>>> f.expr() # expression in the default chart (Cartesian coordinates)
x^2 + y^2 - z^2
>>> f.expr(spherical)
-2*r^2*cos(th)^2 + r^2
>>> f.expr(cylindrical)
rh^2 - z^2
The values of \(f\) at points \(p\) and \(q\) are:
sage: f(p)
2
sage: f(q)
8
>>> from sage.all import *
>>> f(p)
2
>>> f(q)
8
Of course, we may define a scalar field from its coordinate expression in a chart that is not the default one:
sage: g = E.scalar_field(r^2, chart=spherical, name='g')
>>> from sage.all import *
>>> g = E.scalar_field(r**Integer(2), chart=spherical, name='g')
Instead of using the keyword argument chart
, one can pass a dictionary as
the first argument, with the chart as key:
sage: g = E.scalar_field({spherical: r^2}, name='g')
>>> from sage.all import *
>>> g = E.scalar_field({spherical: r**Integer(2)}, name='g')
The computation of the expressions of \(g\) in the other coordinate systems is
triggered by the method display()
:
sage: g.display()
g: E^3 → ℝ
(x, y, z) ↦ x^2 + y^2 + z^2
(r, th, ph) ↦ r^2
(rh, ph, z) ↦ rh^2 + z^2
>>> from sage.all import *
>>> g.display()
g: E^3 → ℝ
(x, y, z) ↦ x^2 + y^2 + z^2
(r, th, ph) ↦ r^2
(rh, ph, z) ↦ rh^2 + z^2
How to express a vector field in various frames#
Let us introduce a vector field on \(\mathbb{E}^3\) by its components in the Cartesian frame. Since the latter is the default vector frame on \(\mathbb{E}^3\), it suffices to write:
sage: v = E.vector_field(-y, x, z^2, name='v')
sage: v.display()
v = -y e_x + x e_y + z^2 e_z
>>> from sage.all import *
>>> v = E.vector_field(-y, x, z**Integer(2), name='v')
>>> v.display()
v = -y e_x + x e_y + z^2 e_z
Equivalently, a vector field can be defined directly from its expansion on the Cartesian frame:
sage: ex, ey, ez = cartesian_frame[:]
sage: v = -y*ex + x*ey + z^2*ez
sage: v.display()
-y e_x + x e_y + z^2 e_z
>>> from sage.all import *
>>> ex, ey, ez = cartesian_frame[:]
>>> v = -y*ex + x*ey + z**Integer(2)*ez
>>> v.display()
-y e_x + x e_y + z^2 e_z
Let us provide v
with some name, as above:
sage: v.set_name('v')
sage: v.display()
v = -y e_x + x e_y + z^2 e_z
>>> from sage.all import *
>>> v.set_name('v')
>>> v.display()
v = -y e_x + x e_y + z^2 e_z
The components of \(v\) are returned by the square bracket operator:
sage: v[1]
-y
sage: v[:]
[-y, x, z^2]
>>> from sage.all import *
>>> v[Integer(1)]
-y
>>> v[:]
[-y, x, z^2]
The computation of the expression of \(v\) in terms of the orthonormal
spherical frame is triggered by the method display()
:
sage: v.display(spherical_frame)
v = z^3/sqrt(x^2 + y^2 + z^2) e_r
- sqrt(x^2 + y^2)*z^2/sqrt(x^2 + y^2 + z^2) e_th + sqrt(x^2 + y^2) e_ph
>>> from sage.all import *
>>> v.display(spherical_frame)
v = z^3/sqrt(x^2 + y^2 + z^2) e_r
- sqrt(x^2 + y^2)*z^2/sqrt(x^2 + y^2 + z^2) e_th + sqrt(x^2 + y^2) e_ph
We note that the components are still expressed in the default chart
(Cartesian coordinates). To have them expressed in the spherical chart, it
suffices to pass the latter as a second argument to display()
:
sage: v.display(spherical_frame, spherical)
v = r^2*cos(th)^3 e_r - r^2*cos(th)^2*sin(th) e_th + r*sin(th) e_ph
>>> from sage.all import *
>>> v.display(spherical_frame, spherical)
v = r^2*cos(th)^3 e_r - r^2*cos(th)^2*sin(th) e_th + r*sin(th) e_ph
Again, the components of \(v\) are obtained by means of the square bracket operator, by specifying the vector frame as first argument and the coordinate chart as the last one:
sage: v[spherical_frame, 1]
z^3/sqrt(x^2 + y^2 + z^2)
sage: v[spherical_frame, 1, spherical]
r^2*cos(th)^3
sage: v[spherical_frame, :, spherical]
[r^2*cos(th)^3, -r^2*cos(th)^2*sin(th), r*sin(th)]
>>> from sage.all import *
>>> v[spherical_frame, Integer(1)]
z^3/sqrt(x^2 + y^2 + z^2)
>>> v[spherical_frame, Integer(1), spherical]
r^2*cos(th)^3
>>> v[spherical_frame, :, spherical]
[r^2*cos(th)^3, -r^2*cos(th)^2*sin(th), r*sin(th)]
Similarly, the expression of \(v\) in terms of the cylindrical frame is:
sage: v.display(cylindrical_frame, cylindrical)
v = rh e_ph + z^2 e_z
sage: v[cylindrical_frame, :, cylindrical]
[0, rh, z^2]
>>> from sage.all import *
>>> v.display(cylindrical_frame, cylindrical)
v = rh e_ph + z^2 e_z
>>> v[cylindrical_frame, :, cylindrical]
[0, rh, z^2]
The value of the vector field \(v\) at point \(p\) is:
sage: vp = v.at(p)
sage: vp
Vector v at Point p on the Euclidean space E^3
sage: vp.display()
v = -e_x - e_y
sage: vp.display(spherical_frame.at(p))
v = sqrt(2) e_ph
sage: vp.display(cylindrical_frame.at(p))
v = sqrt(2) e_ph
>>> from sage.all import *
>>> vp = v.at(p)
>>> vp
Vector v at Point p on the Euclidean space E^3
>>> vp.display()
v = -e_x - e_y
>>> vp.display(spherical_frame.at(p))
v = sqrt(2) e_ph
>>> vp.display(cylindrical_frame.at(p))
v = sqrt(2) e_ph
The value of the vector field \(v\) at point \(q\) is:
sage: vq = v.at(q)
sage: vq
Vector v at Point q on the Euclidean space E^3
sage: vq.display()
v = -2*sqrt(3) e_y + 4 e_z
sage: vq.display(spherical_frame.at(q))
v = 2 e_r - 2*sqrt(3) e_th + 2*sqrt(3) e_ph
sage: vq.display(cylindrical_frame.at(q))
v = 2*sqrt(3) e_ph + 4 e_z
>>> from sage.all import *
>>> vq = v.at(q)
>>> vq
Vector v at Point q on the Euclidean space E^3
>>> vq.display()
v = -2*sqrt(3) e_y + 4 e_z
>>> vq.display(spherical_frame.at(q))
v = 2 e_r - 2*sqrt(3) e_th + 2*sqrt(3) e_ph
>>> vq.display(cylindrical_frame.at(q))
v = 2*sqrt(3) e_ph + 4 e_z
How to change the default coordinates and default vector frame#
At any time, one may change the default coordinates by the method
set_default_chart()
:
sage: E.set_default_chart(spherical)
>>> from sage.all import *
>>> E.set_default_chart(spherical)
Then:
sage: f.expr()
-2*r^2*cos(th)^2 + r^2
sage: v.display()
v = -r*sin(ph)*sin(th) e_x + r*cos(ph)*sin(th) e_y + r^2*cos(th)^2 e_z
>>> from sage.all import *
>>> f.expr()
-2*r^2*cos(th)^2 + r^2
>>> v.display()
v = -r*sin(ph)*sin(th) e_x + r*cos(ph)*sin(th) e_y + r^2*cos(th)^2 e_z
Note that the default vector frame is still the Cartesian one; to change to
the orthonormal spherical frame, use
set_default_frame()
:
sage: E.set_default_frame(spherical_frame)
>>> from sage.all import *
>>> E.set_default_frame(spherical_frame)
Then:
sage: v.display()
v = r^2*cos(th)^3 e_r - r^2*cos(th)^2*sin(th) e_th + r*sin(th) e_ph
sage: v.display(cartesian_frame, cartesian)
v = -y e_x + x e_y + z^2 e_z
>>> from sage.all import *
>>> v.display()
v = r^2*cos(th)^3 e_r - r^2*cos(th)^2*sin(th) e_th + r*sin(th) e_ph
>>> v.display(cartesian_frame, cartesian)
v = -y e_x + x e_y + z^2 e_z