# Miscellaneous generic functions#

A collection of functions implementing generic algorithms in arbitrary groups, including additive and multiplicative groups.

In all cases the group operation is specified by a parameter operation, which is a string either one of the set of multiplication_names or addition_names specified below, or other. In the latter case, the caller must provide an identity, inverse() and op() functions.

multiplication_names = ('multiplication', 'times', 'product', '*')


Also included are a generic function for computing multiples (or powers), and an iterator for general multiples and powers.

EXAMPLES:

Some examples in the multiplicative group of a finite field:

• Discrete logs:

sage: # needs sage.rings.finite_rings
sage: K = GF(3^6,'b')
sage: b = K.gen()
sage: a = b^210
sage: discrete_log(a, b, K.order() - 1)
210

• Linear relation finder:

sage: # needs sage.rings.finite_rings
sage: F.<a> = GF(3^6,'a')
sage: a.multiplicative_order().factor()
2^3 * 7 * 13
sage: b = a^7
sage: c = a^13
sage: linear_relation(b,c,'*')
(13, 7)
sage: b^13 == c^7
True

• Orders of elements:

sage: # needs sage.rings.finite_rings
sage: from sage.groups.generic import order_from_multiple, order_from_bounds
sage: k.<a> = GF(5^5)
sage: b = a^4
sage: order_from_multiple(b, 5^5 - 1, operation='*')
781
sage: order_from_bounds(b, (5^4, 5^5), operation='*')
781


Some examples in the group of points of an elliptic curve over a finite field:

• Discrete logs:

sage: # needs sage.libs.gap sage.rings.finite_rings sage.schemes
sage: F = GF(37^2,'a')
sage: E = EllipticCurve(F,[1,1])
sage: F.<a> = GF(37^2,'a')
sage: E = EllipticCurve(F,[1,1])
sage: P = E(25*a + 16 , 15*a + 7 )
sage: P.order()
672
sage: Q = 39*P; Q
(36*a + 32 : 5*a + 12 : 1)
sage: discrete_log(Q, P, P.order(), operation='+')
39

• Linear relation finder:

sage: # needs sage.libs.gap sage.rings.finite_rings sage.schemes
sage: F.<a> = GF(3^6,'a')
sage: E = EllipticCurve([a^5 + 2*a^3 + 2*a^2 + 2*a, a^4 + a^3 + 2*a + 1])
sage: P = E(a^5 + a^4 + a^3 + a^2 + a + 2 , 0)
sage: Q = E(2*a^3 + 2*a^2 + 2*a , a^3 + 2*a^2 + 1)
sage: linear_relation(P,Q,'+')
(1, 2)
sage: P == 2*Q
True

• Orders of elements:

sage: # needs sage.libs.gap sage.rings.finite_rings sage.schemes
sage: from sage.groups.generic import order_from_multiple, order_from_bounds
sage: k.<a> = GF(5^5)
sage: E = EllipticCurve(k,[2,4])
sage: P = E(3*a^4 + 3*a, 2*a + 1)
sage: M = E.cardinality(); M
3227
sage: plist = M.prime_factors()
sage: order_from_multiple(P, M, plist, operation='+')
3227
sage: Q = E(0,2)
sage: order_from_multiple(Q, M, plist, operation='+')
7
sage: order_from_bounds(Q, Hasse_bounds(5^5), operation='+')
7

sage.groups.generic.bsgs(a, b, bounds, operation='*', identity=None, inverse=None, op=None)#

Totally generic discrete baby-step giant-step function.

Solves $$na=b$$ (or $$a^n=b$$) with $$lb\le n\le ub$$ where bounds==(lb,ub), raising an error if no such $$n$$ exists.

$$a$$ and $$b$$ must be elements of some group with given identity, inverse of x given by inverse(x), and group operation on x, y by op(x,y).

If operation is ‘*’ or ‘+’ then the other arguments are provided automatically; otherwise they must be provided by the caller.

INPUT:

• a – group element

• b – group element

• bounds – a 2-tuple of integers (lower,upper) with 0<=lower<=upper

• operation – string: '*', '+', other

• identity – the identity element of the group

• inverse() – function of 1 argument x, returning inverse of x

• op() - function of 2 arguments x, y returning x*y in the group

OUTPUT:

An integer $$n$$ such that $$a^n = b$$ (or $$na = b$$). If no such $$n$$ exists, this function raises a ValueError exception.

NOTE: This is a generalization of discrete logarithm. One situation where this version is useful is to find the order of an element in a group where we only have bounds on the group order (see the elliptic curve example below).

ALGORITHM: Baby step giant step. Time and space are soft $$O(\sqrt{n})$$ where $$n$$ is the difference between upper and lower bounds.

EXAMPLES:

sage: from sage.groups.generic import bsgs
sage: b = Mod(2,37);  a = b^20
sage: bsgs(b, a, (0, 36))
20

sage: p = next_prime(10^20)                                                     # needs sage.libs.pari
sage: a = Mod(2,p); b = a^(10^25)                                               # needs sage.libs.pari
sage: bsgs(a, b, (10^25 - 10^6, 10^25 + 10^6)) == 10^25                         # needs sage.libs.pari
True

sage: # needs sage.rings.finite_rings
sage: K = GF(3^6,'b')
sage: a = K.gen()
sage: b = a^210
sage: bsgs(a, b, (0, K.order() - 1))
210

sage: K.<z> = CyclotomicField(230)                                              # needs sage.rings.number_field
sage: w = z^500                                                                 # needs sage.rings.number_field
sage: bsgs(z, w, (0, 229))                                                      # needs sage.rings.number_field
40


An additive example in an elliptic curve group:

sage: # needs sage.rings.finite_rings sage.schemes
sage: F.<a> = GF(37^5)
sage: E = EllipticCurve(F, [1,1])
sage: P = E.lift_x(a); P
(a : 28*a^4 + 15*a^3 + 14*a^2 + 7 : 1)


This will return a multiple of the order of P:

sage: bsgs(P, P.parent()(0), Hasse_bounds(F.order()), operation='+')            # needs sage.rings.finite_rings sage.schemes
69327408


AUTHOR:

• John Cremona (2008-03-15)

sage.groups.generic.discrete_log(a, base, ord=None, bounds=None, operation='*', identity=None, inverse=None, op=None, algorithm='bsgs')#

Totally generic discrete log function.

INPUT:

• a – group element

• base – group element (the base)

• ord – integer (multiple of order of base, or None)

• bounds – a priori bounds on the log

• operation – string: '*', '+', other

• identity – the group’s identity

• inverse() - function of 1 argument x, returning inverse of x

• op() - function of 2 arguments x, y, returning x*y in the group

• algorithm – string denoting what algorithm to use for prime-order logarithms: 'bsgs', 'rho', 'lambda'

a and base must be elements of some group with identity given by identity, inverse of x by inverse(x), and group operation on x, y by op(x,y).

If operation is '*' or '+', then the other arguments are provided automatically; otherwise they must be provided by the caller.

OUTPUT:

This returns an integer $$n$$ such that $$b^n = a$$ (or $$nb = a$$), assuming that ord is a multiple of the order of the base $$b$$. If ord is not specified, an attempt is made to compute it.

If no such $$n$$ exists, this function raises a ValueError exception.

Warning

If x has a log method, it is likely to be vastly faster than using this function. E.g., if x is an integer modulo $$n$$, use its log method instead!

ALGORITHM: Pohlig-Hellman, Baby step giant step, Pollard’s lambda/kangaroo, and Pollard’s rho.

EXAMPLES:

sage: b = Mod(2,37);  a = b^20
sage: discrete_log(a, b)
20
sage: b = Mod(3,2017);  a = b^20
sage: discrete_log(a, b, bounds=(10, 100))
20

sage: # needs sage.rings.finite_rings
sage: K = GF(3^6, 'b')
sage: b = K.gen()
sage: a = b^210
sage: discrete_log(a, b, K.order() - 1)
210

sage: b = Mod(1,37);  x = Mod(2,37)
sage: discrete_log(x, b)
Traceback (most recent call last):
...
ValueError: no discrete log of 2 found to base 1
sage: b = Mod(1,997);  x = Mod(2,997)
sage: discrete_log(x, b)
Traceback (most recent call last):
...
ValueError: no discrete log of 2 found to base 1

sage: F.<w> = GF(121)                                                           # needs sage.rings.finite_rings
sage: v = w^120                                                                 # needs sage.rings.finite_rings
sage: v.log(w)                                                                  # needs sage.rings.finite_rings
0

sage: K.<z> = CyclotomicField(230)                                              # needs sage.rings.number_field
sage: w = z^50                                                                  # needs sage.rings.number_field
sage: discrete_log(w, z)                                                        # needs sage.rings.number_field
50


An example where the order is infinite: note that we must give an upper bound here:

sage: # needs sage.rings.number_field
sage: eps = 5*a - 24        # a fundamental unit
sage: eps.multiplicative_order()
+Infinity
sage: eta = eps^100
sage: discrete_log(eta, eps, bounds=(0,1000))
100


In this case we cannot detect negative powers:

sage: eta = eps^(-3)                                                            # needs sage.rings.number_field
sage: discrete_log(eta,eps,bounds=(0,100))                                      # needs sage.rings.number_field
Traceback (most recent call last):
...
ValueError: no discrete log of -11515*a - 55224 found to base 5*a - 24


But we can invert the base (and negate the result) instead:

sage: -discrete_log(eta^-1, eps, bounds=(0,100))                                # needs sage.rings.number_field
-3


An additive example: elliptic curve DLOG:

sage: # needs sage.libs.gap sage.rings.finite_rings sage.schemes
sage: F = GF(37^2,'a')
sage: E = EllipticCurve(F, [1,1])
sage: F.<a> = GF(37^2,'a')
sage: E = EllipticCurve(F, [1,1])
sage: P = E(25*a + 16, 15*a + 7)
sage: P.order()
672
sage: Q = 39*P; Q
(36*a + 32 : 5*a + 12 : 1)
sage: discrete_log(Q, P, P.order(), operation='+')
39


An example of big smooth group:

sage: # needs sage.rings.finite_rings
sage: F.<a> = GF(2^63)
sage: g = F.gen()
sage: u = g**123456789
sage: discrete_log(u,g)
123456789


The above examples also work when the 'rho' and 'lambda' algorithms are used:

sage: b = Mod(2,37);  a = b^20
sage: discrete_log(a, b, algorithm='rho')
20
sage: b = Mod(3,2017);  a = b^20
sage: discrete_log(a, b, algorithm='lambda', bounds=(10, 100))
20

sage: # needs sage.rings.finite_rings
sage: K = GF(3^6,'b')
sage: b = K.gen()
sage: a = b^210
sage: discrete_log(a, b, K.order()-1, algorithm='rho')
210

sage: b = Mod(1,37);  x = Mod(2,37)
sage: discrete_log(x, b, algorithm='lambda')
Traceback (most recent call last):
...
ValueError: no discrete log of 2 found to base 1
sage: b = Mod(1,997);  x = Mod(2,997)
sage: discrete_log(x, b, algorithm='rho')
Traceback (most recent call last):
...
ValueError: no discrete log of 2 found to base 1

sage: # needs sage.libs.gap sage.rings.finite_rings sage.schemes
sage: F = GF(37^2,'a')
sage: E = EllipticCurve(F, [1,1])
sage: F.<a> = GF(37^2,'a')
sage: E = EllipticCurve(F, [1,1])
sage: P = E(25*a + 16, 15*a + 7)
sage: P.order()
672
sage: Q = 39*P; Q
(36*a + 32 : 5*a + 12 : 1)
sage: discrete_log(Q, P, P.order(), operation='+', algorithm='lambda')
39

sage: # needs sage.rings.finite_rings
sage: F.<a> = GF(2^63)
sage: g = F.gen()
sage: u = g**123456789
sage: discrete_log(u, g, algorithm='rho')
123456789


AUTHORS:

• William Stein and David Joyner (2005-01-05)

• John Cremona (2008-02-29) rewrite using dict() and make generic

• Julien Grijalva (2022-08-09) rewrite to make more generic, more algorithm options, and more effective use of bounds

sage.groups.generic.discrete_log_generic(a, base, ord=None, bounds=None, operation='*', identity=None, inverse=None, op=None, algorithm='bsgs')#

Alias for discrete_log.

sage.groups.generic.discrete_log_lambda(a, base, bounds, operation='*', identity=None, inverse=None, op=None, hash_function=<built-in function hash>)#

Pollard Lambda algorithm for computing discrete logarithms. It uses only a logarithmic amount of memory. It’s useful if you have bounds on the logarithm. If you are computing logarithms in a whole finite group, you should use Pollard Rho algorithm.

INPUT:

• a – a group element

• base – a group element

• bounds – a couple (lb,ub) representing the range where we look for a logarithm

• operation – string: ‘+’, ‘*’ or ‘other’

• identity – the identity element of the group

• inverse() – function of 1 argument x returning inverse of x

• op() – function of 2 arguments x, y returning x*y in the group

• hash_function – having an efficient hash function is critical for this algorithm

OUTPUT: Returns an integer $$n$$ such that $$a=base^n$$ (or $$a=n*base$$)

ALGORITHM: Pollard Lambda, if bounds are (lb,ub) it has time complexity

O(sqrt(ub-lb)) and space complexity O(log(ub-lb))

EXAMPLES:

sage: F.<a> = GF(2^63)                                                          # needs sage.rings.finite_rings
sage: discrete_log_lambda(a^1234567, a, (1200000,1250000))                      # needs sage.rings.finite_rings
1234567

sage: # needs sage.rings.finite_rings sage.schemes
sage: F.<a> = GF(37^5)
sage: E = EllipticCurve(F, [1,1])
sage: P = E.lift_x(a); P
(a : 28*a^4 + 15*a^3 + 14*a^2 + 7 : 1)


This will return a multiple of the order of P:

sage: discrete_log_lambda(P.parent()(0), P, Hasse_bounds(F.order()),            # needs sage.rings.finite_rings sage.schemes
....:                     operation='+')
69327408

sage: K.<a> = GF(89**5)                                                         # needs sage.rings.finite_rings
sage: hs = lambda x: hash(x) + 15
sage: discrete_log_lambda(a**(89**3 - 3),       # long time (10s on sage.math, 2011), needs sage.rings.finite_rings
....:                     a, (89**2, 89**4), operation='*', hash_function=hs)
704966


AUTHOR:

– Yann Laigle-Chapuy (2009-01-25)

sage.groups.generic.discrete_log_rho(a, base, ord=None, operation='*', identity=None, inverse=None, op=None, hash_function=<built-in function hash>)#

Pollard Rho algorithm for computing discrete logarithm in cyclic group of prime order. If the group order is very small it falls back to the baby step giant step algorithm.

INPUT:

• a – a group element

• base – a group element

• ord – the order of base or None, in this case we try to compute it

• operation – a string (default: '*') denoting whether we are in an additive group or a multiplicative one

• identity – the group’s identity

• inverse() – function of 1 argument x, returning inverse of x

• op() - function of 2 arguments x, y, returning x*y in the group

• hash_function – having an efficient hash function is critical for this algorithm (see examples)

OUTPUT: an integer $$n$$ such that $$a = base^n$$ (or $$a = n*base$$)

ALGORITHM: Pollard rho for discrete logarithm, adapted from the article of Edlyn Teske, ‘A space efficient algorithm for group structure computation’.

EXAMPLES:

sage: F.<a> = GF(2^13)                                                          # needs sage.rings.finite_rings
sage: g = F.gen()                                                               # needs sage.rings.finite_rings
sage: discrete_log_rho(g^1234, g)                                               # needs sage.rings.finite_rings
1234

sage: # needs sage.rings.finite_rings sage.schemes
sage: F.<a> = GF(37^5)
sage: E = EllipticCurve(F, [1,1])
sage: G = (3*31*2^4)*E.lift_x(a)
sage: discrete_log_rho(12345*G, G, ord=46591, operation='+')
12345


It also works with matrices:

sage: A = matrix(GF(50021), [[10577, 23999, 28893],                             # needs sage.modules sage.rings.finite_rings
....:                        [14601, 41019, 30188],
....:                        [3081, 736, 27092]])
sage: discrete_log_rho(A^1234567, A)                                            # needs sage.modules sage.rings.finite_rings
1234567


Beware, the order must be prime:

sage: I = IntegerModRing(171980)
sage: discrete_log_rho(I(2), I(3))                                              # needs sage.libs.pari
Traceback (most recent call last):
...
ValueError: for Pollard rho algorithm the order of the group must be prime


If it fails to find a suitable logarithm, it raises a ValueError:

sage: I = IntegerModRing(171980)
sage: discrete_log_rho(I(31002), I(15501))                                      # needs sage.libs.pari
Traceback (most recent call last):
...
ValueError: Pollard rho algorithm failed to find a logarithm


The main limitation on the hash function is that we don’t want to have hash(x*y) == hash(x) + hash(y):

sage: # needs sage.libs.pari
sage: I = IntegerModRing(next_prime(2^23))
sage: def test():
....:     try:
....:          discrete_log_rho(I(123456), I(1), operation='+')
....:     except Exception:
....:          print("FAILURE")
sage: test()  # random failure
FAILURE


If this happens, we can provide a better hash function:

sage: discrete_log_rho(I(123456), I(1), operation='+',                          # needs sage.libs.pari
....:                  hash_function=lambda x: hash(x*x))
123456


AUTHOR:

• Yann Laigle-Chapuy (2009-09-05)

sage.groups.generic.has_order(P, n, operation='+')#

Generic function to test if a group element $$P$$ has order exactly equal to a given positive integer $$n$$.

INPUT:

• P – group element with respect to the specified operation

• n – positive integer, or its Factorization

• operation – string, either '+' (default) or '*'

EXAMPLES:

sage: from sage.groups.generic import has_order
sage: E.<P> = EllipticCurve(GF(71), [5,5])
sage: P.order()
57
sage: has_order(P, 57)
True
sage: has_order(P, factor(57))
True
sage: has_order(P, 19)
False
sage: has_order(3*P, 19)
True
sage: has_order(3*P, 57)
False

sage: R = Zmod(14981)
sage: g = R(321)
sage: g.multiplicative_order()
42
sage: has_order(g, 42, operation='*')
True
sage: has_order(g, factor(42), operation='*')
True
sage: has_order(g, 70, operation='*')
False


Note

In some cases, order testing can be much faster than computing the order using order_from_multiple().

sage.groups.generic.linear_relation(P, Q, operation='+', identity=None, inverse=None, op=None)#

Function which solves the equation a*P=m*Q or P^a=Q^m.

Additive version: returns $$(a,m)$$ with minimal $$m>0$$ such that $$aP=mQ$$. Special case: if $$\left<P\right>$$ and $$\left<Q\right>$$ intersect only in $$\{0\}$$ then $$(a,m)=(0,n)$$ where $$n$$ is Q.additive_order().

Multiplicative version: returns $$(a,m)$$ with minimal $$m>0$$ such that $$P^a=Q^m$$. Special case: if $$\left<P\right>$$ and $$\left<Q\right>$$ intersect only in $$\{1\}$$ then $$(a,m)=(0,n)$$ where $$n$$ is Q.multiplicative_order().

ALGORITHM:

Uses the generic bsgs() function, and so works in general finite abelian groups.

EXAMPLES:

An additive example (in an elliptic curve group):

sage: # needs sage.rings.finite_rings sage.schemes
sage: F.<a> = GF(3^6,'a')
sage: E = EllipticCurve([a^5 + 2*a^3 + 2*a^2 + 2*a, a^4 + a^3 + 2*a + 1])
sage: P = E(a^5 + a^4 + a^3 + a^2 + a + 2, 0)
sage: Q = E(2*a^3 + 2*a^2 + 2*a, a^3 + 2*a^2 + 1)
sage: linear_relation(P, Q, '+')
(1, 2)
sage: P == 2*Q
True


A multiplicative example (in a finite field’s multiplicative group):

sage: # needs sage.rings.finite_rings
sage: F.<a> = GF(3^6,'a')
sage: a.multiplicative_order().factor()
2^3 * 7 * 13
sage: b = a^7
sage: c = a^13
sage: linear_relation(b, c, '*')
(13, 7)
sage: b^13 == c^7
True

sage.groups.generic.merge_points(P1, P2, operation='+', identity=None, inverse=None, op=None, check=True)#

Return a group element whose order is the lcm of the given elements.

INPUT:

• P1 – a pair $$(g_1,n_1)$$ where $$g_1$$ is a group element of order $$n_1$$

• P2 – a pair $$(g_2,n_2)$$ where $$g_2$$ is a group element of order $$n_2$$

• operation – string: '+' (default) or '*' or other. If other, the following must be supplied:

• identity – the identity element for the group;

• inverse() – a function of one argument giving the inverse of a group element;

• op() – a function of 2 arguments defining the group binary operation.

OUTPUT:

A pair $$(g_3,n_3)$$ where $$g_3$$ has order $$n_3=\hbox{lcm}(n_1,n_2)$$.

EXAMPLES:

sage: # needs sage.rings.finite_rings
sage: from sage.groups.generic import merge_points
sage: F.<a> = GF(3^6,'a')
sage: b = a^7
sage: c = a^13
sage: ob = (3^6-1)//7
sage: oc = (3^6-1)//13
sage: merge_points((b,ob), (c,oc), operation='*')
(a^4 + 2*a^3 + 2*a^2, 728)
sage: d, od = merge_points((b,ob), (c,oc), operation='*')
sage: od == d.multiplicative_order()
True
sage: od == lcm(ob, oc)
True

sage: # needs sage.libs.gap sage.rings.finite_rings sage.schemes
sage: E = EllipticCurve([a^5 + 2*a^3 + 2*a^2 + 2*a, a^4 + a^3 + 2*a + 1])
sage: P = E(2*a^5 + 2*a^4 + a^3 + 2, a^4 + a^3 + a^2 + 2*a + 2)
sage: P.order()
7
sage: Q = E(2*a^5 + 2*a^4 + 1, a^5 + 2*a^3 + 2*a + 2)
sage: Q.order()
4
sage: R, m = merge_points((P,7), (Q,4), operation='+')
sage: R.order() == m
True
sage: m == lcm(7,4)
True

sage.groups.generic.multiple(a, n, operation='*', identity=None, inverse=None, op=None)#

Return either $$na$$ or $$a^n$$, where $$n$$ is any integer and $$a$$ is a Python object on which a group operation such as addition or multiplication is defined. Uses the standard binary algorithm.

INPUT: See the documentation for discrete_logarithm().

EXAMPLES:

sage: multiple(2, 5)
32
sage: multiple(RealField()('2.5'), 4)                                           # needs sage.rings.real_mpfr
39.0625000000000
sage: multiple(2, -3)
1/8
sage: multiple(2, 100, '+') == 100*2
True
sage: multiple(2, 100) == 2**100
True
sage: multiple(2, -100,) == 2**-100
True
sage: R.<x> = ZZ[]
sage: multiple(x, 100)
x^100
sage: multiple(x, 100, '+')
100*x
sage: multiple(x, -10)
1/x^10


Idempotence is detected, making the following fast:

sage: multiple(1, 10^1000)
1

sage: # needs sage.schemes
sage: E = EllipticCurve('389a1')
sage: P = E(-1,1)
sage: multiple(P, 10, '+')
(645656132358737542773209599489/22817025904944891235367494656 : 525532176124281192881231818644174845702936831/3446581505217248068297884384990762467229696 : 1)
sage: multiple(P, -10, '+')
(645656132358737542773209599489/22817025904944891235367494656 : -528978757629498440949529703029165608170166527/3446581505217248068297884384990762467229696 : 1)

class sage.groups.generic.multiples(P, n, P0=None, indexed=False, operation='+', op=None)#

Bases: object

Return an iterator which runs through P0+i*P for i in range(n).

P and P0 must be Sage objects in some group; if the operation is multiplication then the returned values are instead P0*P**i.

EXAMPLES:

sage: list(multiples(1, 10))
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
sage: list(multiples(1, 10, 100))
[100, 101, 102, 103, 104, 105, 106, 107, 108, 109]

sage: E = EllipticCurve('389a1')                                                # needs sage.schemes
sage: P = E(-1,1)                                                               # needs sage.schemes
sage: for Q in multiples(P, 5): print((Q, Q.height()/P.height()))               # needs sage.schemes
((0 : 1 : 0), 0.000000000000000)
((-1 : 1 : 1), 1.00000000000000)
((10/9 : -35/27 : 1), 4.00000000000000)
((26/361 : -5720/6859 : 1), 9.00000000000000)
((47503/16641 : 9862190/2146689 : 1), 16.0000000000000)

sage: R.<x> = ZZ[]
sage: list(multiples(x, 5))
[0, x, 2*x, 3*x, 4*x]
sage: list(multiples(x, 5, operation='*'))
[1, x, x^2, x^3, x^4]
sage: list(multiples(x, 5, indexed=True))
[(0, 0), (1, x), (2, 2*x), (3, 3*x), (4, 4*x)]
sage: list(multiples(x, 5, indexed=True, operation='*'))
[(0, 1), (1, x), (2, x^2), (3, x^3), (4, x^4)]
sage: for i,y in multiples(x, 5, indexed=True): print("%s  times %s = %s"%(i,x,y))
0  times x = 0
1  times x = x
2  times x = 2*x
3  times x = 3*x
4  times x = 4*x

sage: for i,n in multiples(3, 5, indexed=True, operation='*'):
....:     print("3 to the power %s = %s" % (i,n))
3 to the power 0 = 1
3 to the power 1 = 3
3 to the power 2 = 9
3 to the power 3 = 27
3 to the power 4 = 81

next()#

Return the next item in this multiples iterator.

sage.groups.generic.order_from_bounds(P, bounds, d=None, operation='+', identity=None, inverse=None, op=None)#

Generic function to find order of a group element, given only upper and lower bounds for a multiple of the order (e.g. bounds on the order of the group of which it is an element)

INPUT:

• P – a Sage object which is a group element

• bounds – a 2-tuple (lb,ub) such that m*P=0 (or P**m=1) for some m with lb<=m<=ub.

• d – (optional) a positive integer; only m which are multiples of this will be considered.

• operation – string: '+' (default ) or '*' or other. If other, the following must be supplied:

• identity – the identity element for the group;

• inverse() – a function of one argument giving the inverse of a group element;

• op() – a function of 2 arguments defining the group binary operation.

Note

Typically lb and ub will be bounds on the group order, and from previous calculation we know that the group order is divisible by d.

EXAMPLES:

sage: from sage.groups.generic import order_from_bounds

sage: # needs sage.rings.finite_rings
sage: k.<a> = GF(5^5)
sage: b = a^4
sage: order_from_bounds(b, (5^4, 5^5), operation='*')
781

sage: # needs sage.rings.finite_rings sage.schemes
sage: E = EllipticCurve(k, [2,4])
sage: P = E(3*a^4 + 3*a, 2*a + 1)
sage: bounds = Hasse_bounds(5^5)
sage: Q = E(0,2)
sage: order_from_bounds(Q, bounds, operation='+')
7
sage: order_from_bounds(P, bounds, 7, operation='+')
3227

sage: # needs sage.rings.number_field
sage: K.<z> = CyclotomicField(230)
sage: w = z^50
sage: order_from_bounds(w, (200, 250), operation='*')
23

sage.groups.generic.order_from_multiple(P, m, plist=None, factorization=None, check=True, operation='+')#

Generic function to find order of a group element given a multiple of its order.

INPUT:

• P – a Sage object which is a group element;

• m – a Sage integer which is a multiple of the order of P, i.e. we require that m*P=0 (or P**m=1);

• check – a Boolean (default: True), indicating whether we check if m really is a multiple of the order;

• factorization – the factorization of m, or None in which case this function will need to factor m;

• plist – a list of the prime factors of m, or None - kept for compatibility only, prefer the use of factorization;

• operation – string: '+' (default) or '*'.

Note

It is more efficient for the caller to factor m and cache the factors for subsequent calls.

EXAMPLES:

sage: from sage.groups.generic import order_from_multiple

sage: # needs sage.rings.finite_rings
sage: k.<a> = GF(5^5)
sage: b = a^4
sage: order_from_multiple(b, 5^5 - 1, operation='*')
781

sage: # needs sage.rings.finite_rings sage.schemes
sage: E = EllipticCurve(k, [2,4])
sage: P = E(3*a^4 + 3*a, 2*a + 1)
sage: M = E.cardinality(); M
3227
sage: F = M.factor()
sage: order_from_multiple(P, M, factorization=F, operation='+')
3227
sage: Q = E(0,2)
sage: order_from_multiple(Q, M, factorization=F, operation='+')
7

sage: # needs sage.rings.number_field
sage: K.<z> = CyclotomicField(230)
sage: w = z^50
sage: order_from_multiple(w, 230, operation='*')
23

sage: # needs sage.modules sage.rings.finite_rings
sage: F = GF(2^1279,'a')
sage: n = F.cardinality() - 1  # Mersenne prime
sage: order_from_multiple(F.random_element(), n,
....:                     factorization=[(n,1)], operation='*') == n
True

sage: # needs sage.rings.finite_rings
sage: K.<a> = GF(3^60)
sage: order_from_multiple(a, 3^60 - 1, operation='*', check=False)
42391158275216203514294433200

sage.groups.generic.structure_description(G, latex=False)#

Return a string that tries to describe the structure of G.

This methods wraps GAP’s StructureDescription method.

For full details, including the form of the returned string and the algorithm to build it, see GAP’s documentation.

INPUT:

• latex – a boolean (default: False). If True, return a LaTeX formatted string.

OUTPUT:

string

Warning

From GAP’s documentation: The string returned by StructureDescription is not an isomorphism invariant: non-isomorphic groups can have the same string value, and two isomorphic groups in different representations can produce different strings.

EXAMPLES:

sage: # needs sage.groups
sage: G = CyclicPermutationGroup(6)
sage: G.structure_description()
'C6'
sage: G.structure_description(latex=True)
'C_{6}'
sage: G2 = G.direct_product(G, maps=False)
sage: LatexExpr(G2.structure_description(latex=True))
C_{6} \times C_{6}


This method is mainly intended for small groups or groups with few normal subgroups. Even then there are some surprises:

sage: D3 = DihedralGroup(3)                                                     # needs sage.groups
sage: D3.structure_description()                                                # needs sage.groups
'S3'


We use the Sage notation for the degree of dihedral groups:

sage: D4 = DihedralGroup(4)                                                     # needs sage.groups
sage: D4.structure_description()                                                # needs sage.groups
'D4'


Works for finitely presented groups (github issue #17573):

sage: F.<x, y> = FreeGroup()                                                    # needs sage.groups
sage: G = F / [x^2*y^-1, x^3*y^2, x*y*x^-1*y^-1]                                # needs sage.groups
sage: G.structure_description()                                                 # needs sage.groups
'C7'


And matrix groups (github issue #17573):

sage: groups.matrix.GL(4,2).structure_description()                             # needs sage.libs.gap sage.modules
'A8'