Groups of isometries#
Let \(M = \ZZ^n\) or \(\QQ^n\), \(b: M \times M \rightarrow \QQ\) a bilinear form and \(f: M \rightarrow M\) a linear map. We say that \(f\) is an isometry if for all elements \(x,y\) of \(M\) we have that \(b(x,y)=b(f(x),f(y))\). A group of isometries is a subgroup of \(GL(M)\) consisting of isometries.
EXAMPLES:
sage: L = IntegralLattice("D4") # needs sage.graphs
sage: O = L.orthogonal_group(); O # needs sage.graphs
Group of isometries with 3 generators (
[0 0 0 1] [ 1 1 0 0] [ 1 0 0 0]
[0 1 0 0] [ 0 0 1 0] [-1 -1 -1 -1]
[0 0 1 0] [ 0 1 0 1] [ 0 0 1 0]
[1 0 0 0], [ 0 -1 -1 0], [ 0 0 0 1]
)
>>> from sage.all import *
>>> L = IntegralLattice("D4") # needs sage.graphs
>>> O = L.orthogonal_group(); O # needs sage.graphs
Group of isometries with 3 generators (
[0 0 0 1] [ 1 1 0 0] [ 1 0 0 0]
[0 1 0 0] [ 0 0 1 0] [-1 -1 -1 -1]
[0 0 1 0] [ 0 1 0 1] [ 0 0 1 0]
[1 0 0 0], [ 0 -1 -1 0], [ 0 0 0 1]
)
Basic functionality is provided by GAP:
sage: O.cardinality() # needs sage.graphs
1152
sage: len(O.conjugacy_classes_representatives()) # needs sage.graphs
25
>>> from sage.all import *
>>> O.cardinality() # needs sage.graphs
1152
>>> len(O.conjugacy_classes_representatives()) # needs sage.graphs
25
AUTHORS:
Simon Brandhorst (2018-02): First created
- class sage.groups.matrix_gps.isometries.GroupActionOnQuotientModule(MatrixGroup, quotient_module, is_left=False)[source]#
Bases:
Action
Matrix group action on a quotient module from the right.
INPUT:
MatrixGroup
– the group actingGroupOfIsometries
submodule
– an invariant quotient moduleis_left
– boolean (default:False
)
EXAMPLES:
sage: from sage.groups.matrix_gps.isometries import GroupOfIsometries sage: S = span(ZZ,[[0,1]]) sage: Q = S/(6*S) sage: g = Matrix(QQ,2,[1,0,0,-1]) sage: G = GroupOfIsometries(2, ZZ, [g], invariant_bilinear_form=matrix.identity(2), invariant_quotient_module=Q) sage: g = G.an_element() sage: x = Q.an_element() sage: x*g (5) sage: (x*g).parent() Finitely generated module V/W over Integer Ring with invariants (6)
>>> from sage.all import * >>> from sage.groups.matrix_gps.isometries import GroupOfIsometries >>> S = span(ZZ,[[Integer(0),Integer(1)]]) >>> Q = S/(Integer(6)*S) >>> g = Matrix(QQ,Integer(2),[Integer(1),Integer(0),Integer(0),-Integer(1)]) >>> G = GroupOfIsometries(Integer(2), ZZ, [g], invariant_bilinear_form=matrix.identity(Integer(2)), invariant_quotient_module=Q) >>> g = G.an_element() >>> x = Q.an_element() >>> x*g (5) >>> (x*g).parent() Finitely generated module V/W over Integer Ring with invariants (6)
- class sage.groups.matrix_gps.isometries.GroupActionOnSubmodule(MatrixGroup, submodule, is_left=False)[source]#
Bases:
Action
Matrix group action on a submodule from the right.
INPUT:
MatrixGroup
– an instance ofGroupOfIsometries
submodule
– an invariant submoduleis_left
– bool (default:False
)
EXAMPLES:
sage: from sage.groups.matrix_gps.isometries import GroupOfIsometries sage: S = span(ZZ, [[0,1]]) sage: g = Matrix(QQ, 2, [1,0,0,-1]) sage: G = GroupOfIsometries(2, ZZ, [g], ....: invariant_bilinear_form=matrix.identity(2), ....: invariant_submodule=S) sage: g = G.an_element() sage: x = S.an_element() sage: x*g (0, -1) sage: (x*g).parent() Free module of degree 2 and rank 1 over Integer Ring Echelon basis matrix: [0 1]
>>> from sage.all import * >>> from sage.groups.matrix_gps.isometries import GroupOfIsometries >>> S = span(ZZ, [[Integer(0),Integer(1)]]) >>> g = Matrix(QQ, Integer(2), [Integer(1),Integer(0),Integer(0),-Integer(1)]) >>> G = GroupOfIsometries(Integer(2), ZZ, [g], ... invariant_bilinear_form=matrix.identity(Integer(2)), ... invariant_submodule=S) >>> g = G.an_element() >>> x = S.an_element() >>> x*g (0, -1) >>> (x*g).parent() Free module of degree 2 and rank 1 over Integer Ring Echelon basis matrix: [0 1]
- class sage.groups.matrix_gps.isometries.GroupOfIsometries(degree, base_ring, gens, invariant_bilinear_form, category=None, check=True, invariant_submodule=None, invariant_quotient_module=None)[source]#
Bases:
FinitelyGeneratedMatrixGroup_gap
A base class for Orthogonal matrix groups with a gap backend.
Main difference to
OrthogonalMatrixGroup_gap
is that we can specify generators and a bilinear form. Following GAP, the group action is from the right.INPUT:
degree
– integer, the degree (matrix size) of the matrixbase_ring
– ring, the base ring of the matricesgens
– a list of matrices over the base ringinvariant_bilinear_form
– a symmetric matrixcategory
– (default:None
) a category of groupscheck
– bool (default:True
) check if the generators preserve the bilinear forminvariant_submodule
– a submodule preserved by the group action (default:None
) registers an action on this submoduleinvariant_quotient_module
– a quotient module preserved by the group action (default:None
) registers an action on this quotient module
EXAMPLES:
sage: from sage.groups.matrix_gps.isometries import GroupOfIsometries sage: bil = Matrix(ZZ, 2, [3,2,2,3]) sage: gens = [-Matrix(ZZ, 2, [0,1,1,0])] sage: O = GroupOfIsometries(2, ZZ, gens, bil) sage: O Group of isometries with 1 generator ( [ 0 -1] [-1 0] ) sage: O.order() 2
>>> from sage.all import * >>> from sage.groups.matrix_gps.isometries import GroupOfIsometries >>> bil = Matrix(ZZ, Integer(2), [Integer(3),Integer(2),Integer(2),Integer(3)]) >>> gens = [-Matrix(ZZ, Integer(2), [Integer(0),Integer(1),Integer(1),Integer(0)])] >>> O = GroupOfIsometries(Integer(2), ZZ, gens, bil) >>> O Group of isometries with 1 generator ( [ 0 -1] [-1 0] ) >>> O.order() 2
Infinite groups are O.K. too:
sage: bil = Matrix(ZZ,4,[0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0]) sage: f = Matrix(ZZ,4,[0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, -1, 1, 1, 1]) sage: O = GroupOfIsometries(2, ZZ, [f], bil) sage: O.cardinality() +Infinity
>>> from sage.all import * >>> bil = Matrix(ZZ,Integer(4),[Integer(0), Integer(1), Integer(1), Integer(1), Integer(1), Integer(0), Integer(1), Integer(1), Integer(1), Integer(1), Integer(0), Integer(1), Integer(1), Integer(1), Integer(1), Integer(0)]) >>> f = Matrix(ZZ,Integer(4),[Integer(0), Integer(1), Integer(0), Integer(0), Integer(0), Integer(0), Integer(1), Integer(0), Integer(0), Integer(0), Integer(0), Integer(1), -Integer(1), Integer(1), Integer(1), Integer(1)]) >>> O = GroupOfIsometries(Integer(2), ZZ, [f], bil) >>> O.cardinality() +Infinity
- invariant_bilinear_form()[source]#
Return the symmetric bilinear form preserved by the orthogonal group.
OUTPUT: the matrix defining the bilinear form
EXAMPLES:
sage: from sage.groups.matrix_gps.isometries import GroupOfIsometries sage: bil = Matrix(ZZ,2,[3,2,2,3]) sage: gens = [-Matrix(ZZ,2,[0,1,1,0])] sage: O = GroupOfIsometries(2,ZZ,gens,bil) sage: O.invariant_bilinear_form() [3 2] [2 3]
>>> from sage.all import * >>> from sage.groups.matrix_gps.isometries import GroupOfIsometries >>> bil = Matrix(ZZ,Integer(2),[Integer(3),Integer(2),Integer(2),Integer(3)]) >>> gens = [-Matrix(ZZ,Integer(2),[Integer(0),Integer(1),Integer(1),Integer(0)])] >>> O = GroupOfIsometries(Integer(2),ZZ,gens,bil) >>> O.invariant_bilinear_form() [3 2] [2 3]