PARI Groups#
See pari:polgalois for the PARI documentation of these objects.
- class sage.groups.pari_group.PariGroup(x, degree)[source]#
Bases:
object
EXAMPLES:
sage: PariGroup([6, -1, 2, "S3"], 3) PARI group [6, -1, 2, S3] of degree 3 sage: R.<x> = PolynomialRing(QQ) sage: f = x^4 - 17*x^3 - 2*x + 1 sage: G = f.galois_group(pari_group=True); G PARI group [24, -1, 5, "S4"] of degree 4
>>> from sage.all import * >>> PariGroup([Integer(6), -Integer(1), Integer(2), "S3"], Integer(3)) PARI group [6, -1, 2, S3] of degree 3 >>> R = PolynomialRing(QQ, names=('x',)); (x,) = R._first_ngens(1) >>> f = x**Integer(4) - Integer(17)*x**Integer(3) - Integer(2)*x + Integer(1) >>> G = f.galois_group(pari_group=True); G PARI group [24, -1, 5, "S4"] of degree 4
- cardinality()[source]#
Return the order of
self
.EXAMPLES:
sage: R.<x> = PolynomialRing(QQ) sage: f1 = x^4 - 17*x^3 - 2*x + 1 sage: G1 = f1.galois_group(pari_group=True) sage: G1.order() 24
>>> from sage.all import * >>> R = PolynomialRing(QQ, names=('x',)); (x,) = R._first_ngens(1) >>> f1 = x**Integer(4) - Integer(17)*x**Integer(3) - Integer(2)*x + Integer(1) >>> G1 = f1.galois_group(pari_group=True) >>> G1.order() 24
- degree()[source]#
Return the degree of this group.
EXAMPLES:
sage: R.<x> = PolynomialRing(QQ) sage: f1 = x^4 - 17*x^3 - 2*x + 1 sage: G1 = f1.galois_group(pari_group=True) sage: G1.degree() 4
>>> from sage.all import * >>> R = PolynomialRing(QQ, names=('x',)); (x,) = R._first_ngens(1) >>> f1 = x**Integer(4) - Integer(17)*x**Integer(3) - Integer(2)*x + Integer(1) >>> G1 = f1.galois_group(pari_group=True) >>> G1.degree() 4
- label()[source]#
Return the human readable description for this group generated by Pari.
EXAMPLES:
sage: R.<x> = QQ[] sage: f1 = x^4 - 17*x^3 - 2*x + 1 sage: G1 = f1.galois_group(pari_group=True) sage: G1.label() 'S4'
>>> from sage.all import * >>> R = QQ['x']; (x,) = R._first_ngens(1) >>> f1 = x**Integer(4) - Integer(17)*x**Integer(3) - Integer(2)*x + Integer(1) >>> G1 = f1.galois_group(pari_group=True) >>> G1.label() 'S4'
- order()[source]#
Return the order of
self
.EXAMPLES:
sage: R.<x> = PolynomialRing(QQ) sage: f1 = x^4 - 17*x^3 - 2*x + 1 sage: G1 = f1.galois_group(pari_group=True) sage: G1.order() 24
>>> from sage.all import * >>> R = PolynomialRing(QQ, names=('x',)); (x,) = R._first_ngens(1) >>> f1 = x**Integer(4) - Integer(17)*x**Integer(3) - Integer(2)*x + Integer(1) >>> G1 = f1.galois_group(pari_group=True) >>> G1.order() 24
- permutation_group()[source]#
Return the corresponding GAP transitive group.
EXAMPLES:
sage: R.<x> = QQ[] sage: f = x^8 - x^5 + x^4 - x^3 + 1 sage: G = f.galois_group(pari_group=True) sage: G.permutation_group() Transitive group number 44 of degree 8
>>> from sage.all import * >>> R = QQ['x']; (x,) = R._first_ngens(1) >>> f = x**Integer(8) - x**Integer(5) + x**Integer(4) - x**Integer(3) + Integer(1) >>> G = f.galois_group(pari_group=True) >>> G.permutation_group() Transitive group number 44 of degree 8
- signature()[source]#
Return 1 if contained in the alternating group, -1 otherwise.
EXAMPLES:
sage: R.<x> = QQ[] sage: f1 = x^4 - 17*x^3 - 2*x + 1 sage: G1 = f1.galois_group(pari_group=True) sage: G1.signature() -1
>>> from sage.all import * >>> R = QQ['x']; (x,) = R._first_ngens(1) >>> f1 = x**Integer(4) - Integer(17)*x**Integer(3) - Integer(2)*x + Integer(1) >>> G1 = f1.galois_group(pari_group=True) >>> G1.signature() -1
- transitive_number()[source]#
If the transitive label is nTk, return \(k\).
EXAMPLES:
sage: R.<x> = QQ[] sage: f1 = x^4 - 17*x^3 - 2*x + 1 sage: G1 = f1.galois_group(pari_group=True) sage: G1.transitive_number() 5
>>> from sage.all import * >>> R = QQ['x']; (x,) = R._first_ngens(1) >>> f1 = x**Integer(4) - Integer(17)*x**Integer(3) - Integer(2)*x + Integer(1) >>> G1 = f1.galois_group(pari_group=True) >>> G1.transitive_number() 5