Permutation groups#
A permutation group is a finite group \(G\) whose elements are permutations of a given finite set \(X\) (i.e., bijections \(X \longrightarrow X\)) and whose group operation is the composition of permutations. The number of elements of \(X\) is called the degree of \(G\).
In Sage, a permutation is represented as either a string that defines a permutation using disjoint cycle notation, or a list of tuples, which represent disjoint cycles. That is:
(a,...,b)(c,...,d)...(e,...,f) <--> [(a,...,b), (c,...,d),..., (e,...,f)]
() = identity <--> []
You can make the “named” permutation groups (see
permgp_named.py
) and use the following
constructions:
permutation group generated by elements,
direct_product_permgroups
, which takes a list of permutation groups and returns their direct product.
JOKE: Q: What’s hot, chunky, and acts on a polygon? A: Dihedral soup. Renteln, P. and Dundes, A. “Foolproof: A Sampling of Mathematical Folk Humor.” Notices Amer. Math. Soc. 52, 24-34, 2005.
Index of methods#
Here are the methods of a PermutationGroup()
Return a finitely presented group isomorphic to |
|
Return the list of block systems of imprimitivity. |
|
Return the number of elements of this group. |
|
Return the subgroup of elements that commute with every element of this group. |
|
Return the centralizer of |
|
Return a group character from |
|
Return the matrix of values of the irreducible characters of a permutation group \(G\) at the conjugacy classes of \(G\). |
|
Computes the group cohomology \(H^n(G, F)\), where \(F = \ZZ\) if \(p=0\) and \(F = \ZZ / p \ZZ\) if \(p > 0\) is a prime. |
|
Compute the p-part of the group cohomology \(H^n(G, F)\), where \(F = \ZZ\) if \(p=0\) and \(F = \ZZ / p \ZZ\) if \(p > 0\) is a prime. |
|
Return the commutator subgroup of a group, or of a pair of groups. |
|
Return the composition series of this group as a list of permutation groups. |
|
Return the conjugacy class of |
|
Return a list with all the conjugacy classes of |
|
Return a complete list of representatives of conjugacy classes in a permutation group \(G\). |
|
Return a complete list of representatives of conjugacy classes of subgroups in a permutation group \(G\). |
|
Return the group formed by conjugating |
|
Return the construction of |
|
Return a list of the cosets of |
|
Return the degree of this permutation group. |
|
Return the derived series of this group as a list of permutation groups. |
|
Wraps GAP’s |
|
Return the underlying set that this permutation group acts on. |
|
Computes the exponent of the group. |
|
Return the Fitting subgroup of |
|
Return the list of points fixed by |
|
Return the Frattini subgroup of |
|
Return the \(i\)-th generator of |
|
Return tuple of generators of this group. |
|
For this group, returns a generating set which has few elements. |
|
Return the ID code of this group, which is a list of two integers. |
|
Return the index of this group in the GAP database of primitive groups. |
|
Return whether |
|
The holomorph of a group as a permutation group. |
|
Computes the group homology \(H_n(G, F)\), where \(F = \ZZ\) if \(p=0\) and \(F = \ZZ / p \ZZ\) if \(p > 0\) is a prime. Wraps HAP’s |
|
Computes the \(p\)-part of the group homology \(H_n(G, F)\), where \(F = \ZZ\) if \(p=0\) and \(F = \ZZ / p \ZZ\) if \(p > 0\) is a prime. Wraps HAP’s |
|
Return the ID code of this group, which is a list of two integers. |
|
Return the permutation group that is the intersection of |
|
Return a list of the irreducible characters of |
|
Return |
|
Return |
|
Return |
|
Return |
|
Return |
|
Return |
|
Return |
|
Return |
|
Return |
|
Return |
|
Return |
|
Return |
|
Return |
|
Return |
|
Return |
|
Return |
|
Return |
|
Return an isomorphism from |
|
If the group is simple, then this returns the name of the group. |
|
Return an iterator over the elements of this group. |
|
Return the largest point moved by a permutation in this group. |
|
Return list of all elements of this group. |
|
Return the lower central series of this group as a list of permutation groups. |
|
Return the maximal proper normal subgroups of |
|
Return a minimal generating set |
|
Return the nontrivial minimal normal subgroups |
|
Return the Molien series of a permutation group. The function |
|
Return the number of generators of |
|
Return the list of points not fixed by |
|
Return the normal subgroups of this group as a (sorted in increasing order) list of permutation groups. |
|
Return the normalizer of |
|
Return |
|
Return the Poincaré series of \(G \mod p\) (\(p \geq 2\) must be a prime), for \(n\) large. |
|
Return a random element of this group. |
|
Return an element of |
|
The semidirect product of |
|
Return the sign representation of |
|
Return the socle of |
|
Return the solvable radical of |
|
Return the subgroup of |
|
Return a Strong Generating System of |
|
Return a string that tries to describe the structure of |
|
Wraps the |
|
Return a list of all the subgroups of |
|
Return a Sylow \(p\)-subgroup of the finite group \(G\), where \(p\) is a prime. |
|
If G is a permutation group acting on the set \(X = \{1, 2, ...., n\}\) and H is the stabilizer subgroup of <integer>, a right (respectively left) transversal is a set containing exactly one element from each right (respectively left) coset of H. This method returns a right transversal of |
|
Return the trivial character of |
|
Return the upper central series of this group as a list of permutation groups. |
AUTHORS:
David Joyner (2005-10-14): first version
David Joyner (2005-11-17)
William Stein (2005-11-26): rewrite to better wrap Gap
David Joyner (2005-12-21)
William Stein and David Joyner (2006-01-04): added conjugacy_class_representatives
David Joyner (2006-03): reorganization into subdirectory perm_gps; added __contains__, has_element; fixed _cmp_; added subgroup class+methods, PGL,PSL,PSp, PSU classes,
David Joyner (2006-06): added PGU, functionality to SymmetricGroup, AlternatingGroup, direct_product_permgroups
David Joyner (2006-08): added degree, ramification_module_decomposition_modular_curve and ramification_module_decomposition_hurwitz_curve methods to PSL(2,q), MathieuGroup, is_isomorphic
Bobby Moretti (2006)-10): Added KleinFourGroup, fixed bug in DihedralGroup
David Joyner (2006-10): added is_subgroup (fixing a bug found by Kiran Kedlaya), is_solvable, normalizer, is_normal_subgroup, Suzuki
David Kohel (2007-02): fixed __contains__ to not enumerate group elements, following the convention for __call__
David Harvey, Mike Hansen, Nick Alexander, William Stein (2007-02,03,04,05): Various patches
Nathan Dunfield (2007-05): added orbits
David Joyner (2007-06): added subgroup method (suggested by David Kohel), composition_series, lower_central_series, upper_central_series, cayley_table, quotient_group, sylow_subgroup, is_cyclic, homology, homology_part, cohomology, cohomology_part, poincare_series, molien_series, is_simple, is_monomial, is_supersolvable, is_nilpotent, is_perfect, is_polycyclic, is_elementary_abelian, is_pgroup, gens_small, isomorphism_type_info_simple_group. moved all the”named” groups to a new file.
Nick Alexander (2007-07): move is_isomorphic to isomorphism_to, add from_gap_list
William Stein (2007-07): put is_isomorphic back (and make it better)
David Joyner (2007-08): fixed bugs in composition_series, upper/lower_central_series, derived_series,
David Joyner (2008-06): modified is_normal (reported by W. J. Palenstijn), and added normalizes
David Joyner (2008-08): Added example to docstring of cohomology.
Simon King (2009-04): __cmp__ methods for PermutationGroup_generic and PermutationGroup_subgroup
Nicolas Borie (2009): Added orbit, transversals, stabiliser and strong_generating_system methods
Christopher Swenson (2012): Added a special case to compute the order efficiently. (This patch Copyright 2012 Google Inc. All Rights Reserved. )
Javier Lopez Pena (2013): Added conjugacy classes.
Sebastian Oehms (2018): added _coerce_map_from_ in order to use isomorphism coming up with as_permutation_group method (Issue #25706)
Christian Stump (2018): Added alternative implementation of strong_generating_system directly using GAP.
Sebastian Oehms (2018): Added
PermutationGroup_generic._Hom_()
to usesage.groups.libgap_morphism.GroupHomset_libgap
andPermutationGroup_generic.gap()
andPermutationGroup_generic._subgroup_constructor()
(for compatibility to libgap framework, see Issue #26750
REFERENCES:
Cameron, P., Permutation Groups. New York: Cambridge University Press, 1999.
Wielandt, H., Finite Permutation Groups. New York: Academic Press, 1964.
Dixon, J. and Mortimer, B., Permutation Groups, Springer-Verlag, Berlin/New York, 1996.
Note
Though Suzuki groups are okay, Ree groups should not be wrapped as permutation groups - the construction is too slow - unless (for small values or the parameter) they are made using explicit generators.
- sage.groups.perm_gps.permgroup.PermutationGroup(gens=None, *args, **kwds)[source]#
Return the permutation group associated to \(x\) (typically a list of generators).
INPUT:
gens
– (default:None
) list of generatorsgap_group
– (optional) a gap permutation groupcanonicalize
– boolean (default:True
); ifTrue
, sort generators and remove duplicates
OUTPUT: a permutation group
EXAMPLES:
sage: G = PermutationGroup([[(1,2,3),(4,5)],[(3,4)]]) sage: G Permutation Group with generators [(3,4), (1,2,3)(4,5)]
>>> from sage.all import * >>> G = PermutationGroup([[(Integer(1),Integer(2),Integer(3)),(Integer(4),Integer(5))],[(Integer(3),Integer(4))]]) >>> G Permutation Group with generators [(3,4), (1,2,3)(4,5)]
We can also make permutation groups from PARI groups:
sage: # needs sage.libs.pari sage: H = pari('x^4 - 2*x^3 - 2*x + 1').polgalois() sage: G = PariGroup(H, 4); G PARI group [8, -1, 3, "D(4)"] of degree 4 sage: H = PermutationGroup(G); H Transitive group number 3 of degree 4 sage: H.gens() ((1,2,3,4), (1,3))
>>> from sage.all import * >>> # needs sage.libs.pari >>> H = pari('x^4 - 2*x^3 - 2*x + 1').polgalois() >>> G = PariGroup(H, Integer(4)); G PARI group [8, -1, 3, "D(4)"] of degree 4 >>> H = PermutationGroup(G); H Transitive group number 3 of degree 4 >>> H.gens() ((1,2,3,4), (1,3))
We can also create permutation groups whose generators are GAP permutation objects:
sage: p = gap('(1,2)(3,7)(4,6)(5,8)'); p (1,2)(3,7)(4,6)(5,8) sage: PermutationGroup([p]) Permutation Group with generators [(1,2)(3,7)(4,6)(5,8)]
>>> from sage.all import * >>> p = gap('(1,2)(3,7)(4,6)(5,8)'); p (1,2)(3,7)(4,6)(5,8) >>> PermutationGroup([p]) Permutation Group with generators [(1,2)(3,7)(4,6)(5,8)]
Permutation groups can work on any domain. In the following examples, the permutations are specified in list notation, according to the order of the elements of the domain:
sage: list(PermutationGroup([['b','c','a']], domain=['a','b','c'])) [(), ('a','b','c'), ('a','c','b')] sage: list(PermutationGroup([['b','c','a']], domain=['b','c','a'])) [()] sage: list(PermutationGroup([['b','c','a']], domain=['a','c','b'])) [(), ('a','b')]
>>> from sage.all import * >>> list(PermutationGroup([['b','c','a']], domain=['a','b','c'])) [(), ('a','b','c'), ('a','c','b')] >>> list(PermutationGroup([['b','c','a']], domain=['b','c','a'])) [()] >>> list(PermutationGroup([['b','c','a']], domain=['a','c','b'])) [(), ('a','b')]
There is an underlying gap object that implements each permutation group:
sage: G = PermutationGroup([[(1,2,3,4)]]) sage: G._gap_() Group( [ (1,2,3,4) ] ) sage: gap(G) Group( [ (1,2,3,4) ] ) sage: gap(G) is G._gap_() True sage: G = PermutationGroup([[(1,2,3),(4,5)],[(3,4)]]) sage: current_randstate().set_seed_gap() sage: G1, G2 = G._gap_().DerivedSeries() sage: G1 Group( [ (3,4), (1,2,3)(4,5) ] ) sage: G2.GeneratorsSmallest() [ (3,4,5), (2,3)(4,5), (1,2)(4,5) ]
>>> from sage.all import * >>> G = PermutationGroup([[(Integer(1),Integer(2),Integer(3),Integer(4))]]) >>> G._gap_() Group( [ (1,2,3,4) ] ) >>> gap(G) Group( [ (1,2,3,4) ] ) >>> gap(G) is G._gap_() True >>> G = PermutationGroup([[(Integer(1),Integer(2),Integer(3)),(Integer(4),Integer(5))],[(Integer(3),Integer(4))]]) >>> current_randstate().set_seed_gap() >>> G1, G2 = G._gap_().DerivedSeries() >>> G1 Group( [ (3,4), (1,2,3)(4,5) ] ) >>> G2.GeneratorsSmallest() [ (3,4,5), (2,3)(4,5), (1,2)(4,5) ]
We can create a permutation group from a group action:
sage: a = lambda x: (2*x) % 7 sage: H = PermutationGroup(action=a, domain=range(7)) # needs sage.combinat sage: H.orbits() # needs sage.libs.pari ((0,), (1, 2, 4), (3, 6, 5)) sage: H.gens() # needs sage.libs.pari ((1,2,4), (3,6,5))
>>> from sage.all import * >>> a = lambda x: (Integer(2)*x) % Integer(7) >>> H = PermutationGroup(action=a, domain=range(Integer(7))) # needs sage.combinat >>> H.orbits() # needs sage.libs.pari ((0,), (1, 2, 4), (3, 6, 5)) >>> H.gens() # needs sage.libs.pari ((1,2,4), (3,6,5))
Note that we provide generators for the acting group. The permutation group we construct is its homomorphic image:
sage: # needs sage.combinat sage: a = lambda g, x: vector(g*x, immutable=True) sage: X = [vector(x, immutable=True) for x in GF(3)^2] sage: G = SL(2,3); G.gens() ( [1 1] [0 1] [0 1], [2 0] ) sage: H = PermutationGroup(G.gens(), action=a, domain=X) sage: H.orbits() (((0, 0),), ((1, 0), (2, 0), (0, 1), (1, 1), (2, 1), (0, 2), (1, 2), (2, 2))) sage: H.gens() (((0,1),(1,1),(2,1))((0,2),(2,2),(1,2)), ((1,0),(0,2),(2,0),(0,1))((1,1),(1,2),(2,2),(2,1)))
>>> from sage.all import * >>> # needs sage.combinat >>> a = lambda g, x: vector(g*x, immutable=True) >>> X = [vector(x, immutable=True) for x in GF(Integer(3))**Integer(2)] >>> G = SL(Integer(2),Integer(3)); G.gens() ( [1 1] [0 1] [0 1], [2 0] ) >>> H = PermutationGroup(G.gens(), action=a, domain=X) >>> H.orbits() (((0, 0),), ((1, 0), (2, 0), (0, 1), (1, 1), (2, 1), (0, 2), (1, 2), (2, 2))) >>> H.gens() (((0,1),(1,1),(2,1))((0,2),(2,2),(1,2)), ((1,0),(0,2),(2,0),(0,1))((1,1),(1,2),(2,2),(2,1)))
The orbits of the conjugation action are the conjugacy classes, i.e., in bijection with integer partitions:
sage: a = lambda g, x: g*x*g^-1 sage: [len(PermutationGroup(SymmetricGroup(n).gens(), action=a, # needs sage.combinat ....: domain=SymmetricGroup(n)).orbits()) ....: for n in range(1, 8)] [1, 2, 3, 5, 7, 11, 15]
>>> from sage.all import * >>> a = lambda g, x: g*x*g**-Integer(1) >>> [len(PermutationGroup(SymmetricGroup(n).gens(), action=a, # needs sage.combinat ... domain=SymmetricGroup(n)).orbits()) ... for n in range(Integer(1), Integer(8))] [1, 2, 3, 5, 7, 11, 15]
- class sage.groups.perm_gps.permgroup.PermutationGroup_action(gens, action, domain, gap_group=None, category=None, canonicalize=None)[source]#
Bases:
PermutationGroup_generic
A permutation group given by a finite group action.
EXAMPLES:
A cyclic action:
sage: n = 3 sage: a = lambda x: SetPartition([[e % n + 1 for e in b] for b in x]) sage: S = SetPartitions(n) # needs sage.combinat sage: G = PermutationGroup(action=a, domain=S) # needs sage.combinat sage: G.orbits() # needs sage.combinat (({{1}, {2}, {3}},), ({{1, 2}, {3}}, {{1}, {2, 3}}, {{1, 3}, {2}}), ({{1, 2, 3}},))
>>> from sage.all import * >>> n = Integer(3) >>> a = lambda x: SetPartition([[e % n + Integer(1) for e in b] for b in x]) >>> S = SetPartitions(n) # needs sage.combinat >>> G = PermutationGroup(action=a, domain=S) # needs sage.combinat >>> G.orbits() # needs sage.combinat (({{1}, {2}, {3}},), ({{1, 2}, {3}}, {{1}, {2, 3}}, {{1, 3}, {2}}), ({{1, 2, 3}},))
The regular action of the symmetric group:
sage: a = lambda g, x: g*x*g^-1 sage: S = SymmetricGroup(3) sage: G = PermutationGroup(S.gens(), action=a, domain=S) # needs sage.combinat sage: G.orbits() # needs sage.combinat (((),), ((1,3,2), (1,2,3)), ((2,3), (1,3), (1,2)))
>>> from sage.all import * >>> a = lambda g, x: g*x*g**-Integer(1) >>> S = SymmetricGroup(Integer(3)) >>> G = PermutationGroup(S.gens(), action=a, domain=S) # needs sage.combinat >>> G.orbits() # needs sage.combinat (((),), ((1,3,2), (1,2,3)), ((2,3), (1,3), (1,2)))
The trivial action of the symmetric group:
sage: PermutationGroup(SymmetricGroup(3).gens(), # needs sage.combinat ....: action=lambda g, x: x, domain=[1]) Permutation Group with generators [()]
>>> from sage.all import * >>> PermutationGroup(SymmetricGroup(Integer(3)).gens(), # needs sage.combinat ... action=lambda g, x: x, domain=[Integer(1)]) Permutation Group with generators [()]
- orbits()[source]#
Returns the orbits of the elements of the domain under the default group action.
EXAMPLES:
sage: a = lambda x: (2*x) % 7 sage: G = PermutationGroup(action=a, domain=range(7)) # needs sage.combinat sage: G.orbits() # needs sage.combinat ((0,), (1, 2, 4), (3, 6, 5))
>>> from sage.all import * >>> a = lambda x: (Integer(2)*x) % Integer(7) >>> G = PermutationGroup(action=a, domain=range(Integer(7))) # needs sage.combinat >>> G.orbits() # needs sage.combinat ((0,), (1, 2, 4), (3, 6, 5))
- class sage.groups.perm_gps.permgroup.PermutationGroup_generic(gens=None, gap_group=None, canonicalize=True, domain=None, category=None)[source]#
Bases:
FiniteGroup
A generic permutation group.
EXAMPLES:
sage: G = PermutationGroup([[(1,2,3),(4,5)],[(3,4)]]) sage: G Permutation Group with generators [(3,4), (1,2,3)(4,5)] sage: G.center() Subgroup generated by [()] of (Permutation Group with generators [(3,4), (1,2,3)(4,5)]) sage: G.group_id() [120, 34] sage: n = G.order(); n 120 sage: G = PermutationGroup([[(1,2,3),(4,5)],[(3,4)]]) sage: TestSuite(G).run()
>>> from sage.all import * >>> G = PermutationGroup([[(Integer(1),Integer(2),Integer(3)),(Integer(4),Integer(5))],[(Integer(3),Integer(4))]]) >>> G Permutation Group with generators [(3,4), (1,2,3)(4,5)] >>> G.center() Subgroup generated by [()] of (Permutation Group with generators [(3,4), (1,2,3)(4,5)]) >>> G.group_id() [120, 34] >>> n = G.order(); n 120 >>> G = PermutationGroup([[(Integer(1),Integer(2),Integer(3)),(Integer(4),Integer(5))],[(Integer(3),Integer(4))]]) >>> TestSuite(G).run()
- Element[source]#
alias of
PermutationGroupElement
- Subgroup[source]#
alias of
PermutationGroup_subgroup
- as_finitely_presented_group(reduced=False)[source]#
Return a finitely presented group isomorphic to
self
.This method acts as wrapper for the GAP function
IsomorphismFpGroupByGenerators
, which yields an isomorphism from a given group to a finitely presented group.INPUT:
reduced
– (defaultFalse
) ifTrue
,FinitelyPresentedGroup.simplified
is called, attempting to simplify the presentation of the finitely presented group to be returned.
OUTPUT: finite presentation of
self
, obtained by taking the image of the isomorphism returned by the GAP functionIsomorphismFpGroupByGenerators
ALGORITHM:
Uses GAP.
EXAMPLES:
sage: CyclicPermutationGroup(50).as_finitely_presented_group() Finitely presented group < a | a^50 > sage: DihedralGroup(4).as_finitely_presented_group() Finitely presented group < a, b | b^2, a^4, (b*a)^2 > sage: GeneralDihedralGroup([2,2]).as_finitely_presented_group() Finitely presented group < a, b, c | a^2, b^2, c^2, (c*b)^2, (c*a)^2, (b*a)^2 >
>>> from sage.all import * >>> CyclicPermutationGroup(Integer(50)).as_finitely_presented_group() Finitely presented group < a | a^50 > >>> DihedralGroup(Integer(4)).as_finitely_presented_group() Finitely presented group < a, b | b^2, a^4, (b*a)^2 > >>> GeneralDihedralGroup([Integer(2),Integer(2)]).as_finitely_presented_group() Finitely presented group < a, b, c | a^2, b^2, c^2, (c*b)^2, (c*a)^2, (b*a)^2 >
GAP algorithm is not guaranteed to produce minimal or canonical presentation:
sage: G = PermutationGroup(['(1,2,3,4,5)', '(1,5)(2,4)']) sage: G.is_isomorphic(DihedralGroup(5)) True sage: K = G.as_finitely_presented_group(); K Finitely presented group < a, b | b^2, (b*a)^2, b*a^-3*b*a^2 > sage: K.as_permutation_group().is_isomorphic(DihedralGroup(5)) True
>>> from sage.all import * >>> G = PermutationGroup(['(1,2,3,4,5)', '(1,5)(2,4)']) >>> G.is_isomorphic(DihedralGroup(Integer(5))) True >>> K = G.as_finitely_presented_group(); K Finitely presented group < a, b | b^2, (b*a)^2, b*a^-3*b*a^2 > >>> K.as_permutation_group().is_isomorphic(DihedralGroup(Integer(5))) True
We can attempt to reduce the output presentation:
sage: H = PermutationGroup(['(1,2,3,4,5)', '(1,3,5,2,4)']) sage: H.as_finitely_presented_group() Finitely presented group < a, b | b^-2*a^-1, b*a^-2 > sage: H.as_finitely_presented_group(reduced=True) Finitely presented group < a | a^5 >
>>> from sage.all import * >>> H = PermutationGroup(['(1,2,3,4,5)', '(1,3,5,2,4)']) >>> H.as_finitely_presented_group() Finitely presented group < a, b | b^-2*a^-1, b*a^-2 > >>> H.as_finitely_presented_group(reduced=True) Finitely presented group < a | a^5 >
AUTHORS:
Davis Shurbert (2013-06-21): initial version
- base(seed=None)[source]#
Return a (minimum) base of this permutation group.
A base \(B\) of a permutation group is a subset of the domain of the group such that the only group element stabilizing all of \(B\) is the identity.
INPUT:
seed
(default:None
), if given must be a subset of the domain of a base. When used, an attempt to create a base containing all or part ofseed
will be made.
EXAMPLES:
sage: G = PermutationGroup([(1,2,3),(6,7,8)]) sage: G.base() [1, 6] sage: G.base([2]) [2, 6] sage: H = PermutationGroup([('a','b','c'),('a','y')]) sage: H.base() ['a', 'b', 'c'] sage: S = SymmetricGroup(13) sage: S.base() [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12] sage: S = MathieuGroup(12) sage: S.base() [1, 2, 3, 4, 5] sage: S.base([1,3,5,7,9,11]) # create a base for M12 with only odd integers [1, 3, 5, 7, 9]
>>> from sage.all import * >>> G = PermutationGroup([(Integer(1),Integer(2),Integer(3)),(Integer(6),Integer(7),Integer(8))]) >>> G.base() [1, 6] >>> G.base([Integer(2)]) [2, 6] >>> H = PermutationGroup([('a','b','c'),('a','y')]) >>> H.base() ['a', 'b', 'c'] >>> S = SymmetricGroup(Integer(13)) >>> S.base() [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12] >>> S = MathieuGroup(Integer(12)) >>> S.base() [1, 2, 3, 4, 5] >>> S.base([Integer(1),Integer(3),Integer(5),Integer(7),Integer(9),Integer(11)]) # create a base for M12 with only odd integers [1, 3, 5, 7, 9]
- blocks_all(representatives=True)[source]#
Return the list of block systems of imprimitivity.
For more information on primitivity, see the Wikipedia article on primitive group actions.
INPUT:
representative
– (boolean) whether to return all possible block systems of imprimitivity or only one of their representatives (the block can be obtained from its representative set \(S\) by computing the orbit of \(S\) underself
).This parameter is set to
True
by default (as it is GAP’s default behaviour).
OUTPUT:
This method returns a description of all block systems. Hence, the output is a “list of lists of lists” or a “list of lists” depending on the value of
representatives
. A bit more clearly, output is:A list of length (#number of different block systems) of
block systems, each of them being defined as
If
representatives=True
: a list of representatives of each set of the block systemIf
representatives=False
: a partition of the elements defining an imprimitivity block.
See also
EXAMPLES:
Picking an interesting group:
sage: # needs sage.graphs sage: g = graphs.DodecahedralGraph() sage: g.is_vertex_transitive() True sage: ag = g.automorphism_group() sage: ag.is_primitive() False
>>> from sage.all import * >>> # needs sage.graphs >>> g = graphs.DodecahedralGraph() >>> g.is_vertex_transitive() True >>> ag = g.automorphism_group() >>> ag.is_primitive() False
Computing its blocks representatives:
sage: ag.blocks_all() # needs sage.graphs [[0, 15]]
>>> from sage.all import * >>> ag.blocks_all() # needs sage.graphs [[0, 15]]
Now the full block:
sage: sorted(ag.blocks_all(representatives=False)[0]) # needs sage.graphs [[0, 15], [1, 16], [2, 12], [3, 13], [4, 9], [5, 10], [6, 11], [7, 18], [8, 17], [14, 19]]
>>> from sage.all import * >>> sorted(ag.blocks_all(representatives=False)[Integer(0)]) # needs sage.graphs [[0, 15], [1, 16], [2, 12], [3, 13], [4, 9], [5, 10], [6, 11], [7, 18], [8, 17], [14, 19]]
- cardinality()[source]#
Return the number of elements of this group.
See also:
degree()
.EXAMPLES:
sage: G = PermutationGroup([[(1,2,3),(4,5)], [(1,2)]]) sage: G.order() 12 sage: G = PermutationGroup([()]) sage: G.order() 1 sage: G = PermutationGroup([]) sage: G.order() 1
>>> from sage.all import * >>> G = PermutationGroup([[(Integer(1),Integer(2),Integer(3)),(Integer(4),Integer(5))], [(Integer(1),Integer(2))]]) >>> G.order() 12 >>> G = PermutationGroup([()]) >>> G.order() 1 >>> G = PermutationGroup([]) >>> G.order() 1
cardinality()
is just an alias:sage: PermutationGroup([(1,2,3)]).cardinality() 3
>>> from sage.all import * >>> PermutationGroup([(Integer(1),Integer(2),Integer(3))]).cardinality() 3
- center()[source]#
Return the subgroup of elements that commute with every element of this group.
EXAMPLES:
sage: G = PermutationGroup([[(1,2,3,4)]]) sage: G.center() Subgroup generated by [(1,2,3,4)] of (Permutation Group with generators [(1,2,3,4)]) sage: G = PermutationGroup([[(1,2,3,4)], [(1,2)]]) sage: G.center() Subgroup generated by [()] of (Permutation Group with generators [(1,2), (1,2,3,4)])
>>> from sage.all import * >>> G = PermutationGroup([[(Integer(1),Integer(2),Integer(3),Integer(4))]]) >>> G.center() Subgroup generated by [(1,2,3,4)] of (Permutation Group with generators [(1,2,3,4)]) >>> G = PermutationGroup([[(Integer(1),Integer(2),Integer(3),Integer(4))], [(Integer(1),Integer(2))]]) >>> G.center() Subgroup generated by [()] of (Permutation Group with generators [(1,2), (1,2,3,4)])
- centralizer(g)[source]#
Return the centralizer of
g
inself
.EXAMPLES:
sage: G = PermutationGroup([[(1,2),(3,4)], [(1,2,3,4)]]) sage: g = G([(1,3)]) sage: G.centralizer(g) Subgroup generated by [(1,3), (2,4)] of (Permutation Group with generators [(1,2)(3,4), (1,2,3,4)]) sage: g = G([(1,2,3,4)]) sage: G.centralizer(g) Subgroup generated by [(1,2,3,4)] of (Permutation Group with generators [(1,2)(3,4), (1,2,3,4)]) sage: H = G.subgroup([G([(1,2,3,4)])]) sage: G.centralizer(H) Subgroup generated by [(1,2,3,4)] of (Permutation Group with generators [(1,2)(3,4), (1,2,3,4)])
>>> from sage.all import * >>> G = PermutationGroup([[(Integer(1),Integer(2)),(Integer(3),Integer(4))], [(Integer(1),Integer(2),Integer(3),Integer(4))]]) >>> g = G([(Integer(1),Integer(3))]) >>> G.centralizer(g) Subgroup generated by [(1,3), (2,4)] of (Permutation Group with generators [(1,2)(3,4), (1,2,3,4)]) >>> g = G([(Integer(1),Integer(2),Integer(3),Integer(4))]) >>> G.centralizer(g) Subgroup generated by [(1,2,3,4)] of (Permutation Group with generators [(1,2)(3,4), (1,2,3,4)]) >>> H = G.subgroup([G([(Integer(1),Integer(2),Integer(3),Integer(4))])]) >>> G.centralizer(H) Subgroup generated by [(1,2,3,4)] of (Permutation Group with generators [(1,2)(3,4), (1,2,3,4)])
- character(values)[source]#
Return a group character from
values
, wherevalues
is a list of the values of the character evaluated on the conjugacy classes.EXAMPLES:
sage: G = AlternatingGroup(4) sage: n = len(G.conjugacy_classes_representatives()) sage: G.character([1]*n) # needs sage.rings.number_field Character of Alternating group of order 4!/2 as a permutation group
>>> from sage.all import * >>> G = AlternatingGroup(Integer(4)) >>> n = len(G.conjugacy_classes_representatives()) >>> G.character([Integer(1)]*n) # needs sage.rings.number_field Character of Alternating group of order 4!/2 as a permutation group
- character_table()[source]#
Return the matrix of values of the irreducible characters of a permutation group \(G\) at the conjugacy classes of \(G\).
The columns represent the conjugacy classes of \(G\) and the rows represent the different irreducible characters in the ordering given by GAP.
EXAMPLES:
sage: G = PermutationGroup([[(1,2),(3,4)], [(1,2,3)]]) sage: G.order() 12 sage: G.character_table() # needs sage.rings.number_field [ 1 1 1 1] [ 1 -zeta3 - 1 zeta3 1] [ 1 zeta3 -zeta3 - 1 1] [ 3 0 0 -1] sage: G = PermutationGroup([[(1,2),(3,4)], [(1,2,3)]]) sage: CT = gap(G).CharacterTable()
>>> from sage.all import * >>> G = PermutationGroup([[(Integer(1),Integer(2)),(Integer(3),Integer(4))], [(Integer(1),Integer(2),Integer(3))]]) >>> G.order() 12 >>> G.character_table() # needs sage.rings.number_field [ 1 1 1 1] [ 1 -zeta3 - 1 zeta3 1] [ 1 zeta3 -zeta3 - 1 1] [ 3 0 0 -1] >>> G = PermutationGroup([[(Integer(1),Integer(2)),(Integer(3),Integer(4))], [(Integer(1),Integer(2),Integer(3))]]) >>> CT = gap(G).CharacterTable()
Type
CT.Display()
to display this nicely.sage: G = PermutationGroup([[(1,2),(3,4)], [(1,2,3,4)]]) sage: G.order() 8 sage: G.character_table() # needs sage.rings.number_field [ 1 1 1 1 1] [ 1 -1 -1 1 1] [ 1 -1 1 -1 1] [ 1 1 -1 -1 1] [ 2 0 0 0 -2] sage: CT = gap(G).CharacterTable()
>>> from sage.all import * >>> G = PermutationGroup([[(Integer(1),Integer(2)),(Integer(3),Integer(4))], [(Integer(1),Integer(2),Integer(3),Integer(4))]]) >>> G.order() 8 >>> G.character_table() # needs sage.rings.number_field [ 1 1 1 1 1] [ 1 -1 -1 1 1] [ 1 -1 1 -1 1] [ 1 1 -1 -1 1] [ 2 0 0 0 -2] >>> CT = gap(G).CharacterTable()
Again, type
CT.Display()
to display this nicely.sage: # needs sage.rings.number_field sage: SymmetricGroup(2).character_table() [ 1 -1] [ 1 1] sage: SymmetricGroup(3).character_table() [ 1 -1 1] [ 2 0 -1] [ 1 1 1] sage: SymmetricGroup(5).character_table() [ 1 -1 1 1 -1 -1 1] [ 4 -2 0 1 1 0 -1] [ 5 -1 1 -1 -1 1 0] [ 6 0 -2 0 0 0 1] [ 5 1 1 -1 1 -1 0] [ 4 2 0 1 -1 0 -1] [ 1 1 1 1 1 1 1] sage: list(AlternatingGroup(6).character_table()) [(1, 1, 1, 1, 1, 1, 1), (5, 1, 2, -1, -1, 0, 0), (5, 1, -1, 2, -1, 0, 0), (8, 0, -1, -1, 0, zeta5^3 + zeta5^2 + 1, -zeta5^3 - zeta5^2), (8, 0, -1, -1, 0, -zeta5^3 - zeta5^2, zeta5^3 + zeta5^2 + 1), (9, 1, 0, 0, 1, -1, -1), (10, -2, 1, 1, 0, 0, 0)]
>>> from sage.all import * >>> # needs sage.rings.number_field >>> SymmetricGroup(Integer(2)).character_table() [ 1 -1] [ 1 1] >>> SymmetricGroup(Integer(3)).character_table() [ 1 -1 1] [ 2 0 -1] [ 1 1 1] >>> SymmetricGroup(Integer(5)).character_table() [ 1 -1 1 1 -1 -1 1] [ 4 -2 0 1 1 0 -1] [ 5 -1 1 -1 -1 1 0] [ 6 0 -2 0 0 0 1] [ 5 1 1 -1 1 -1 0] [ 4 2 0 1 -1 0 -1] [ 1 1 1 1 1 1 1] >>> list(AlternatingGroup(Integer(6)).character_table()) [(1, 1, 1, 1, 1, 1, 1), (5, 1, 2, -1, -1, 0, 0), (5, 1, -1, 2, -1, 0, 0), (8, 0, -1, -1, 0, zeta5^3 + zeta5^2 + 1, -zeta5^3 - zeta5^2), (8, 0, -1, -1, 0, -zeta5^3 - zeta5^2, zeta5^3 + zeta5^2 + 1), (9, 1, 0, 0, 1, -1, -1), (10, -2, 1, 1, 0, 0, 0)]
Suppose that you have a class function \(f(g)\) on \(G\) and you know the values \(v_1, \ldots, v_n\) on the conjugacy class elements in
conjugacy_classes_representatives(G)
= \([g_1, \ldots, g_n]\). Since the irreducible characters \(\rho_1, \ldots, \rho_n\) of \(G\) form an \(E\)-basis of the space of all class functions (\(E\) a “sufficiently large” cyclotomic field), such a class function is a linear combination of these basis elements, \(f = c_1 \rho_1 + \cdots + c_n \rho_n\). To find the coefficients \(c_i\), you simply solve the linear systemcharacter_table_values(G)
\([v_1, ..., v_n] = [c_1, ..., c_n]\), where \([v_1, \ldots, v_n]\) =character_table_values(G)
\(^{(-1)}[c_1, ..., c_n]\).AUTHORS:
David Joyner and William Stein (2006-01-04)
- cohomology(n, p=0)[source]#
Computes the group cohomology \(H^n(G, F)\), where \(F = \ZZ\) if \(p=0\) and \(F = \ZZ / p \ZZ\) if \(p > 0\) is a prime.
Wraps HAP’s
GroupHomology
function, written by Graham Ellis.REQUIRES: GAP package HAP (in gap_packages-*.spkg).
EXAMPLES:
sage: G = SymmetricGroup(4) sage: G.cohomology(1,2) # optional - gap_package_hap Multiplicative Abelian group isomorphic to C2 sage: G = SymmetricGroup(3) sage: G.cohomology(5) # optional - gap_package_hap Trivial Abelian group sage: G.cohomology(5,2) # optional - gap_package_hap Multiplicative Abelian group isomorphic to C2 sage: G.homology(5,3) # optional - gap_package_hap Trivial Abelian group sage: G.homology(5,4) # optional - gap_package_hap Traceback (most recent call last): ... ValueError: p must be 0 or prime
>>> from sage.all import * >>> G = SymmetricGroup(Integer(4)) >>> G.cohomology(Integer(1),Integer(2)) # optional - gap_package_hap Multiplicative Abelian group isomorphic to C2 >>> G = SymmetricGroup(Integer(3)) >>> G.cohomology(Integer(5)) # optional - gap_package_hap Trivial Abelian group >>> G.cohomology(Integer(5),Integer(2)) # optional - gap_package_hap Multiplicative Abelian group isomorphic to C2 >>> G.homology(Integer(5),Integer(3)) # optional - gap_package_hap Trivial Abelian group >>> G.homology(Integer(5),Integer(4)) # optional - gap_package_hap Traceback (most recent call last): ... ValueError: p must be 0 or prime
This computes \(H^4(S_3, \ZZ)\) and \(H^4(S_3, \ZZ / 2 \ZZ)\), respectively.
AUTHORS:
David Joyner and Graham Ellis
REFERENCES:
G. Ellis, ‘Computing group resolutions’, J. Symbolic Computation. Vol.38, (2004)1077-1118 (Available at http://hamilton.nuigalway.ie/).
D. Joyner, ‘A primer on computational group homology and cohomology’, http://front.math.ucdavis.edu/0706.0549.
- cohomology_part(n, p=0)[source]#
Compute the p-part of the group cohomology \(H^n(G, F)\), where \(F = \ZZ\) if \(p=0\) and \(F = \ZZ / p \ZZ\) if \(p > 0\) is a prime.
Wraps HAP’s Homology function, written by Graham Ellis, applied to the \(p\)-Sylow subgroup of \(G\).
REQUIRES: GAP package HAP (in gap_packages-*.spkg).
EXAMPLES:
sage: G = SymmetricGroup(5) sage: G.cohomology_part(7,2) # optional - gap_package_hap Multiplicative Abelian group isomorphic to C2 x C2 x C2 sage: G = SymmetricGroup(3) sage: G.cohomology_part(2,3) # optional - gap_package_hap Multiplicative Abelian group isomorphic to C3
>>> from sage.all import * >>> G = SymmetricGroup(Integer(5)) >>> G.cohomology_part(Integer(7),Integer(2)) # optional - gap_package_hap Multiplicative Abelian group isomorphic to C2 x C2 x C2 >>> G = SymmetricGroup(Integer(3)) >>> G.cohomology_part(Integer(2),Integer(3)) # optional - gap_package_hap Multiplicative Abelian group isomorphic to C3
AUTHORS:
David Joyner and Graham Ellis
- commutator(other=None)[source]#
Return the commutator subgroup of a group, or of a pair of groups.
INPUT:
other
– (default:None
) a permutation group.
OUTPUT:
Let \(G\) denote
self
. Ifother
isNone
, then this method returns the subgroup of \(G\) generated by the set of commutators,\[\{[g_1,g_2]\vert g_1, g_2\in G\} = \{g_1^{-1}g_2^{-1}g_1g_2\vert g_1, g_2\in G\}\]Let \(H\) denote
other
, in the case that it is notNone
. Then this method returns the group generated by the set of commutators,\[\{[g,h]\vert g\in G\, h\in H\} = \{g^{-1}h^{-1}gh\vert g\in G\, h\in H\}\]The two groups need only be permutation groups, there is no notion of requiring them to explicitly be subgroups of some other group.
Note
For the identical statement, the generators of the returned group can vary from one execution to the next.
EXAMPLES:
sage: G = DiCyclicGroup(4) sage: G.commutator() Permutation Group with generators [(1,3,5,7)(2,4,6,8)(9,11,13,15)(10,12,14,16)] sage: G = SymmetricGroup(5) sage: H = CyclicPermutationGroup(5) sage: C = G.commutator(H) sage: C.is_isomorphic(AlternatingGroup(5)) True
>>> from sage.all import * >>> G = DiCyclicGroup(Integer(4)) >>> G.commutator() Permutation Group with generators [(1,3,5,7)(2,4,6,8)(9,11,13,15)(10,12,14,16)] >>> G = SymmetricGroup(Integer(5)) >>> H = CyclicPermutationGroup(Integer(5)) >>> C = G.commutator(H) >>> C.is_isomorphic(AlternatingGroup(Integer(5))) True
An abelian group will have a trivial commutator.
sage: G = CyclicPermutationGroup(10) sage: G.commutator() Permutation Group with generators [()]
>>> from sage.all import * >>> G = CyclicPermutationGroup(Integer(10)) >>> G.commutator() Permutation Group with generators [()]
The quotient of a group by its commutator is always abelian.
sage: G = DihedralGroup(20) sage: C = G.commutator() sage: Q = G.quotient(C) sage: Q.is_abelian() True
>>> from sage.all import * >>> G = DihedralGroup(Integer(20)) >>> C = G.commutator() >>> Q = G.quotient(C) >>> Q.is_abelian() True
When forming commutators from two groups, the order of the groups does not matter.
sage: D = DihedralGroup(3) sage: S = SymmetricGroup(2) sage: C1 = D.commutator(S); C1 Permutation Group with generators [(1,2,3)] sage: C2 = S.commutator(D); C2 Permutation Group with generators [(1,3,2)] sage: C1 == C2 True
>>> from sage.all import * >>> D = DihedralGroup(Integer(3)) >>> S = SymmetricGroup(Integer(2)) >>> C1 = D.commutator(S); C1 Permutation Group with generators [(1,2,3)] >>> C2 = S.commutator(D); C2 Permutation Group with generators [(1,3,2)] >>> C1 == C2 True
This method calls two different functions in GAP, so this tests that their results are consistent. The commutator groups may have different generators, but the groups are equal.
sage: G = DiCyclicGroup(3) sage: C = G.commutator(); C Permutation Group with generators [(5,7,6)] sage: CC = G.commutator(G); CC Permutation Group with generators [(5,6,7)] sage: C == CC True
>>> from sage.all import * >>> G = DiCyclicGroup(Integer(3)) >>> C = G.commutator(); C Permutation Group with generators [(5,7,6)] >>> CC = G.commutator(G); CC Permutation Group with generators [(5,6,7)] >>> C == CC True
The second group is checked.
sage: G = SymmetricGroup(2) sage: G.commutator('junk') Traceback (most recent call last): ... TypeError: junk is not a permutation group
>>> from sage.all import * >>> G = SymmetricGroup(Integer(2)) >>> G.commutator('junk') Traceback (most recent call last): ... TypeError: junk is not a permutation group
- composition_series()[source]#
Return the composition series of this group as a list of permutation groups.
EXAMPLES:
These computations use pseudo-random numbers, so we set the seed for reproducible testing.
sage: set_random_seed(0) sage: G = PermutationGroup([[(1,2,3),(4,5)],[(3,4)]]) sage: G.composition_series() [Subgroup generated by [(3,4), (1,2,3)(4,5)] of (Permutation Group with generators [(3,4), (1,2,3)(4,5)]), Subgroup generated by [(1,5)(3,4), (1,5)(2,4), (1,3,5)] of (Permutation Group with generators [(3,4), (1,2,3)(4,5)]), Subgroup generated by [()] of (Permutation Group with generators [(3,4), (1,2,3)(4,5)])] sage: G = PermutationGroup([[(1,2,3),(4,5)], [(1,2)]]) sage: CS = G.composition_series() sage: CS[3] Subgroup generated by [()] of (Permutation Group with generators [(1,2), (1,2,3)(4,5)])
>>> from sage.all import * >>> set_random_seed(Integer(0)) >>> G = PermutationGroup([[(Integer(1),Integer(2),Integer(3)),(Integer(4),Integer(5))],[(Integer(3),Integer(4))]]) >>> G.composition_series() [Subgroup generated by [(3,4), (1,2,3)(4,5)] of (Permutation Group with generators [(3,4), (1,2,3)(4,5)]), Subgroup generated by [(1,5)(3,4), (1,5)(2,4), (1,3,5)] of (Permutation Group with generators [(3,4), (1,2,3)(4,5)]), Subgroup generated by [()] of (Permutation Group with generators [(3,4), (1,2,3)(4,5)])] >>> G = PermutationGroup([[(Integer(1),Integer(2),Integer(3)),(Integer(4),Integer(5))], [(Integer(1),Integer(2))]]) >>> CS = G.composition_series() >>> CS[Integer(3)] Subgroup generated by [()] of (Permutation Group with generators [(1,2), (1,2,3)(4,5)])
- conjugacy_class(g)[source]#
Return the conjugacy class of
g
inside the groupself
.INPUT:
g
– an element of the permutation groupself
OUTPUT:
The conjugacy class of
g
in the groupself
. Ifself
is the group denoted by \(G\), this method computes the set \(\{x^{-1}gx\ \vert\ x \in G \}\)EXAMPLES:
sage: G = DihedralGroup(3) sage: g = G.gen(0) sage: G.conjugacy_class(g) Conjugacy class of (1,2,3) in Dihedral group of order 6 as a permutation group
>>> from sage.all import * >>> G = DihedralGroup(Integer(3)) >>> g = G.gen(Integer(0)) >>> G.conjugacy_class(g) Conjugacy class of (1,2,3) in Dihedral group of order 6 as a permutation group
- conjugacy_classes()[source]#
Return a list with all the conjugacy classes of
self
.EXAMPLES:
sage: G = DihedralGroup(3) sage: G.conjugacy_classes() [Conjugacy class of () in Dihedral group of order 6 as a permutation group, Conjugacy class of (2,3) in Dihedral group of order 6 as a permutation group, Conjugacy class of (1,2,3) in Dihedral group of order 6 as a permutation group]
>>> from sage.all import * >>> G = DihedralGroup(Integer(3)) >>> G.conjugacy_classes() [Conjugacy class of () in Dihedral group of order 6 as a permutation group, Conjugacy class of (2,3) in Dihedral group of order 6 as a permutation group, Conjugacy class of (1,2,3) in Dihedral group of order 6 as a permutation group]
- conjugacy_classes_representatives()[source]#
Return a complete list of representatives of conjugacy classes in a permutation group \(G\).
The ordering is that given by GAP.
EXAMPLES:
sage: G = PermutationGroup([[(1,2),(3,4)], [(1,2,3,4)]]) sage: cl = G.conjugacy_classes_representatives(); cl [(), (2,4), (1,2)(3,4), (1,2,3,4), (1,3)(2,4)] sage: cl[3] in G True
>>> from sage.all import * >>> G = PermutationGroup([[(Integer(1),Integer(2)),(Integer(3),Integer(4))], [(Integer(1),Integer(2),Integer(3),Integer(4))]]) >>> cl = G.conjugacy_classes_representatives(); cl [(), (2,4), (1,2)(3,4), (1,2,3,4), (1,3)(2,4)] >>> cl[Integer(3)] in G True
sage: G = SymmetricGroup(5) sage: G.conjugacy_classes_representatives() # needs sage.combinat [(), (1,2), (1,2)(3,4), (1,2,3), (1,2,3)(4,5), (1,2,3,4), (1,2,3,4,5)]
>>> from sage.all import * >>> G = SymmetricGroup(Integer(5)) >>> G.conjugacy_classes_representatives() # needs sage.combinat [(), (1,2), (1,2)(3,4), (1,2,3), (1,2,3)(4,5), (1,2,3,4), (1,2,3,4,5)]
sage: S = SymmetricGroup(['a','b','c']) sage: S.conjugacy_classes_representatives() # needs sage.combinat [(), ('a','b'), ('a','b','c')]
>>> from sage.all import * >>> S = SymmetricGroup(['a','b','c']) >>> S.conjugacy_classes_representatives() # needs sage.combinat [(), ('a','b'), ('a','b','c')]
AUTHORS:
David Joyner and William Stein (2006-01-04)
- conjugacy_classes_subgroups()[source]#
Return a complete list of representatives of conjugacy classes of subgroups in a permutation group \(G\).
The ordering is that given by GAP.
EXAMPLES:
sage: G = PermutationGroup([[(1,2),(3,4)], [(1,2,3,4)]]) sage: cl = G.conjugacy_classes_subgroups(); cl [Subgroup generated by [()] of (Permutation Group with generators [(1,2)(3,4), (1,2,3,4)]), Subgroup generated by [(1,2)(3,4)] of (Permutation Group with generators [(1,2)(3,4), (1,2,3,4)]), Subgroup generated by [(1,3)(2,4)] of (Permutation Group with generators [(1,2)(3,4), (1,2,3,4)]), Subgroup generated by [(2,4)] of (Permutation Group with generators [(1,2)(3,4), (1,2,3,4)]), Subgroup generated by [(1,4)(2,3), (1,2)(3,4)] of (Permutation Group with generators [(1,2)(3,4), (1,2,3,4)]), Subgroup generated by [(2,4), (1,3)(2,4)] of (Permutation Group with generators [(1,2)(3,4), (1,2,3,4)]), Subgroup generated by [(1,2,3,4), (1,3)(2,4)] of (Permutation Group with generators [(1,2)(3,4), (1,2,3,4)]), Subgroup generated by [(1,4)(2,3), (1,2)(3,4), (2,4)] of (Permutation Group with generators [(1,2)(3,4), (1,2,3,4)])]
>>> from sage.all import * >>> G = PermutationGroup([[(Integer(1),Integer(2)),(Integer(3),Integer(4))], [(Integer(1),Integer(2),Integer(3),Integer(4))]]) >>> cl = G.conjugacy_classes_subgroups(); cl [Subgroup generated by [()] of (Permutation Group with generators [(1,2)(3,4), (1,2,3,4)]), Subgroup generated by [(1,2)(3,4)] of (Permutation Group with generators [(1,2)(3,4), (1,2,3,4)]), Subgroup generated by [(1,3)(2,4)] of (Permutation Group with generators [(1,2)(3,4), (1,2,3,4)]), Subgroup generated by [(2,4)] of (Permutation Group with generators [(1,2)(3,4), (1,2,3,4)]), Subgroup generated by [(1,4)(2,3), (1,2)(3,4)] of (Permutation Group with generators [(1,2)(3,4), (1,2,3,4)]), Subgroup generated by [(2,4), (1,3)(2,4)] of (Permutation Group with generators [(1,2)(3,4), (1,2,3,4)]), Subgroup generated by [(1,2,3,4), (1,3)(2,4)] of (Permutation Group with generators [(1,2)(3,4), (1,2,3,4)]), Subgroup generated by [(1,4)(2,3), (1,2)(3,4), (2,4)] of (Permutation Group with generators [(1,2)(3,4), (1,2,3,4)])]
sage: G = SymmetricGroup(3) sage: G.conjugacy_classes_subgroups() [Subgroup generated by [()] of (Symmetric group of order 3! as a permutation group), Subgroup generated by [(2,3)] of (Symmetric group of order 3! as a permutation group), Subgroup generated by [(1,2,3)] of (Symmetric group of order 3! as a permutation group), Subgroup generated by [(1,2,3), (2,3)] of (Symmetric group of order 3! as a permutation group)]
>>> from sage.all import * >>> G = SymmetricGroup(Integer(3)) >>> G.conjugacy_classes_subgroups() [Subgroup generated by [()] of (Symmetric group of order 3! as a permutation group), Subgroup generated by [(2,3)] of (Symmetric group of order 3! as a permutation group), Subgroup generated by [(1,2,3)] of (Symmetric group of order 3! as a permutation group), Subgroup generated by [(1,2,3), (2,3)] of (Symmetric group of order 3! as a permutation group)]
AUTHORS:
David Joyner (2006-10)
- conjugate(g)[source]#
Return the group formed by conjugating
self
withg
.INPUT:
g
– a permutation group element, or an object that converts to a permutation group element, such as a list of integers or a string of cycles.
OUTPUT:
If
self
is the group denoted by \(H\), then this method computes the group\[g^{-1}Hg = \{g^{-1}hg\vert h\in H\}\]which is the group \(H\) conjugated by \(g\).
There are no restrictions on
self
andg
belonging to a common permutation group, and correspondingly, there is no relationship (such as a common parent) betweenself
and the output group.EXAMPLES:
sage: G = DihedralGroup(6) sage: a = PermutationGroupElement("(1,2,3,4)") sage: G.conjugate(a) Permutation Group with generators [(1,5,6,2,3,4), (1,4)(2,6)(3,5)]
>>> from sage.all import * >>> G = DihedralGroup(Integer(6)) >>> a = PermutationGroupElement("(1,2,3,4)") >>> G.conjugate(a) Permutation Group with generators [(1,5,6,2,3,4), (1,4)(2,6)(3,5)]
The element performing the conjugation can be specified in several ways.
sage: G = DihedralGroup(6) sage: strng = "(1,2,3,4)" sage: G.conjugate(strng) Permutation Group with generators [(1,5,6,2,3,4), (1,4)(2,6)(3,5)] sage: G = DihedralGroup(6) sage: lst = [2,3,4,1] sage: G.conjugate(lst) Permutation Group with generators [(1,5,6,2,3,4), (1,4)(2,6)(3,5)] sage: G = DihedralGroup(6) sage: cycles = [(1,2,3,4)] sage: G.conjugate(cycles) Permutation Group with generators [(1,5,6,2,3,4), (1,4)(2,6)(3,5)]
>>> from sage.all import * >>> G = DihedralGroup(Integer(6)) >>> strng = "(1,2,3,4)" >>> G.conjugate(strng) Permutation Group with generators [(1,5,6,2,3,4), (1,4)(2,6)(3,5)] >>> G = DihedralGroup(Integer(6)) >>> lst = [Integer(2),Integer(3),Integer(4),Integer(1)] >>> G.conjugate(lst) Permutation Group with generators [(1,5,6,2,3,4), (1,4)(2,6)(3,5)] >>> G = DihedralGroup(Integer(6)) >>> cycles = [(Integer(1),Integer(2),Integer(3),Integer(4))] >>> G.conjugate(cycles) Permutation Group with generators [(1,5,6,2,3,4), (1,4)(2,6)(3,5)]
Conjugation is a group automorphism, so conjugate groups will be isomorphic.
sage: G = DiCyclicGroup(6) sage: G.degree() 11 sage: cycle = [i+1 for i in range(1,11)] + [1] sage: C = G.conjugate(cycle) sage: G.is_isomorphic(C) True
>>> from sage.all import * >>> G = DiCyclicGroup(Integer(6)) >>> G.degree() 11 >>> cycle = [i+Integer(1) for i in range(Integer(1),Integer(11))] + [Integer(1)] >>> C = G.conjugate(cycle) >>> G.is_isomorphic(C) True
The conjugating element may be from a symmetric group with larger degree than the group being conjugated.
sage: G = AlternatingGroup(5) sage: G.degree() 5 sage: g = "(1,3)(5,6,7)" sage: H = G.conjugate(g); H Permutation Group with generators [(1,4,6,3,2), (1,4,6)] sage: H.degree() 6
>>> from sage.all import * >>> G = AlternatingGroup(Integer(5)) >>> G.degree() 5 >>> g = "(1,3)(5,6,7)" >>> H = G.conjugate(g); H Permutation Group with generators [(1,4,6,3,2), (1,4,6)] >>> H.degree() 6
The conjugating element is checked.
sage: G = SymmetricGroup(3) sage: G.conjugate("junk") Traceback (most recent call last): ... TypeError: junk does not convert to a permutation group element
>>> from sage.all import * >>> G = SymmetricGroup(Integer(3)) >>> G.conjugate("junk") Traceback (most recent call last): ... TypeError: junk does not convert to a permutation group element
- construction()[source]#
Return the construction of
self
.EXAMPLES:
sage: P1 = PermutationGroup([[(1,2)]]) sage: P1.construction() (PermutationGroupFunctor[(1,2)], Permutation Group with generators [()]) sage: PermutationGroup([]).construction() is None True
>>> from sage.all import * >>> P1 = PermutationGroup([[(Integer(1),Integer(2))]]) >>> P1.construction() (PermutationGroupFunctor[(1,2)], Permutation Group with generators [()]) >>> PermutationGroup([]).construction() is None True
This allows us to perform computations like the following:
sage: P1 = PermutationGroup([[(1,2)]]); p1 = P1.gen() sage: P2 = PermutationGroup([[(1,3)]]); p2 = P2.gen() sage: p = p1*p2; p (1,2,3) sage: p.parent() Permutation Group with generators [(1,2), (1,3)] sage: p.parent().domain() {1, 2, 3}
>>> from sage.all import * >>> P1 = PermutationGroup([[(Integer(1),Integer(2))]]); p1 = P1.gen() >>> P2 = PermutationGroup([[(Integer(1),Integer(3))]]); p2 = P2.gen() >>> p = p1*p2; p (1,2,3) >>> p.parent() Permutation Group with generators [(1,2), (1,3)] >>> p.parent().domain() {1, 2, 3}
Note that this will merge permutation groups with different domains:
sage: g1 = PermutationGroupElement([(1,2),(3,4,5)]) sage: g2 = PermutationGroup([('a','b')], domain=['a', 'b']).gens()[0] sage: g2 ('a','b') sage: p = g1*g2; p (1,2)(3,4,5)('a','b') sage: P = parent(p) sage: P Permutation Group with generators [('a','b'), (1,2), (1,2,3,4,5)]
>>> from sage.all import * >>> g1 = PermutationGroupElement([(Integer(1),Integer(2)),(Integer(3),Integer(4),Integer(5))]) >>> g2 = PermutationGroup([('a','b')], domain=['a', 'b']).gens()[Integer(0)] >>> g2 ('a','b') >>> p = g1*g2; p (1,2)(3,4,5)('a','b') >>> P = parent(p) >>> P Permutation Group with generators [('a','b'), (1,2), (1,2,3,4,5)]
- cosets(S, side='right')[source]#
Return a list of the cosets of
S
inself
.INPUT:
S
– a subgroup ofself
. An error is raised ifS
is not a subgroup.side
– (default:'right'
) Determines if right cosets or left cosets are returned.side
refers to where the representative is placed in the products forming the cosets and thus allowable values are only'right'
and'left'
.
OUTPUT:
A list of lists. Each inner list is a coset of the subgroup in the group. The first element of each coset is the smallest element (based on the ordering of the elements of
self
) of all the group elements that have not yet appeared in a previous coset. The elements of each coset are in the same order as the subgroup elements used to build the coset’s elements.As a consequence, the subgroup itself is the first coset, and its first element is the identity element. For each coset, the first element listed is the element used as a representative to build the coset. These representatives form an increasing sequence across the list of cosets, and within a coset the representative is the smallest element of its coset (both orderings are based on of the ordering of elements of
self
).In the case of a normal subgroup, left and right cosets should appear in the same order as part of the outer list. However, the list of the elements of a particular coset may be in a different order for the right coset versus the order in the left coset. So, if you check to see if a subgroup is normal, it is necessary to sort each individual coset first (but not the list of cosets, due to the ordering of the representatives). See below for examples of this.
Note
This is a naive implementation intended for instructional purposes, and hence is slow for larger groups. Sage and GAP provide more sophisticated functions for working quickly with cosets of larger groups.
EXAMPLES:
The default is to build right cosets. This example works with the symmetry group of an 8-gon and a normal subgroup. Notice that a straight check on the equality of the output is not sufficient to check normality, while sorting the individual cosets is sufficient to then simply test equality of the list of lists. Study the second coset in each list to understand the need for sorting the elements of the cosets.
sage: G = DihedralGroup(8) sage: quarter_turn = G('(1,3,5,7)(2,4,6,8)'); quarter_turn (1,3,5,7)(2,4,6,8) sage: S = G.subgroup([quarter_turn]) sage: rc = G.cosets(S); rc [[(), (1,3,5,7)(2,4,6,8), (1,5)(2,6)(3,7)(4,8), (1,7,5,3)(2,8,6,4)], [(2,8)(3,7)(4,6), (1,7)(2,6)(3,5), (1,5)(2,4)(6,8), (1,3)(4,8)(5,7)], [(1,2)(3,8)(4,7)(5,6), (1,8)(2,7)(3,6)(4,5), (1,6)(2,5)(3,4)(7,8), (1,4)(2,3)(5,8)(6,7)], [(1,2,3,4,5,6,7,8), (1,4,7,2,5,8,3,6), (1,6,3,8,5,2,7,4), (1,8,7,6,5,4,3,2)]] sage: lc = G.cosets(S, side='left'); lc [[(), (1,3,5,7)(2,4,6,8), (1,5)(2,6)(3,7)(4,8), (1,7,5,3)(2,8,6,4)], [(2,8)(3,7)(4,6), (1,3)(4,8)(5,7), (1,5)(2,4)(6,8), (1,7)(2,6)(3,5)], [(1,2)(3,8)(4,7)(5,6), (1,4)(2,3)(5,8)(6,7), (1,6)(2,5)(3,4)(7,8), (1,8)(2,7)(3,6)(4,5)], [(1,2,3,4,5,6,7,8), (1,4,7,2,5,8,3,6), (1,6,3,8,5,2,7,4), (1,8,7,6,5,4,3,2)]] sage: S.is_normal(G) True sage: rc == lc False sage: rc_sorted = [sorted(c) for c in rc] sage: lc_sorted = [sorted(c) for c in lc] sage: rc_sorted == lc_sorted True
>>> from sage.all import * >>> G = DihedralGroup(Integer(8)) >>> quarter_turn = G('(1,3,5,7)(2,4,6,8)'); quarter_turn (1,3,5,7)(2,4,6,8) >>> S = G.subgroup([quarter_turn]) >>> rc = G.cosets(S); rc [[(), (1,3,5,7)(2,4,6,8), (1,5)(2,6)(3,7)(4,8), (1,7,5,3)(2,8,6,4)], [(2,8)(3,7)(4,6), (1,7)(2,6)(3,5), (1,5)(2,4)(6,8), (1,3)(4,8)(5,7)], [(1,2)(3,8)(4,7)(5,6), (1,8)(2,7)(3,6)(4,5), (1,6)(2,5)(3,4)(7,8), (1,4)(2,3)(5,8)(6,7)], [(1,2,3,4,5,6,7,8), (1,4,7,2,5,8,3,6), (1,6,3,8,5,2,7,4), (1,8,7,6,5,4,3,2)]] >>> lc = G.cosets(S, side='left'); lc [[(), (1,3,5,7)(2,4,6,8), (1,5)(2,6)(3,7)(4,8), (1,7,5,3)(2,8,6,4)], [(2,8)(3,7)(4,6), (1,3)(4,8)(5,7), (1,5)(2,4)(6,8), (1,7)(2,6)(3,5)], [(1,2)(3,8)(4,7)(5,6), (1,4)(2,3)(5,8)(6,7), (1,6)(2,5)(3,4)(7,8), (1,8)(2,7)(3,6)(4,5)], [(1,2,3,4,5,6,7,8), (1,4,7,2,5,8,3,6), (1,6,3,8,5,2,7,4), (1,8,7,6,5,4,3,2)]] >>> S.is_normal(G) True >>> rc == lc False >>> rc_sorted = [sorted(c) for c in rc] >>> lc_sorted = [sorted(c) for c in lc] >>> rc_sorted == lc_sorted True
An example with the symmetry group of a regular tetrahedron and a subgroup that is not normal. Thus, the right and left cosets are different (and so are the representatives). With each individual coset sorted, a naive test of normality is possible.
sage: A = AlternatingGroup(4) sage: face_turn = A('(1,2,3)'); face_turn (1,2,3) sage: stabilizer = A.subgroup([face_turn]) sage: rc = A.cosets(stabilizer, side='right'); rc [[(), (1,2,3), (1,3,2)], [(2,3,4), (1,3)(2,4), (1,4,2)], [(2,4,3), (1,4,3), (1,2)(3,4)], [(1,2,4), (1,4)(2,3), (1,3,4)]] sage: lc = A.cosets(stabilizer, side='left'); lc [[(), (1,2,3), (1,3,2)], [(2,3,4), (1,2)(3,4), (1,3,4)], [(2,4,3), (1,2,4), (1,3)(2,4)], [(1,4,2), (1,4,3), (1,4)(2,3)]] sage: stabilizer.is_normal(A) False sage: rc_sorted = [sorted(c) for c in rc] sage: lc_sorted = [sorted(c) for c in lc] sage: rc_sorted == lc_sorted False
>>> from sage.all import * >>> A = AlternatingGroup(Integer(4)) >>> face_turn = A('(1,2,3)'); face_turn (1,2,3) >>> stabilizer = A.subgroup([face_turn]) >>> rc = A.cosets(stabilizer, side='right'); rc [[(), (1,2,3), (1,3,2)], [(2,3,4), (1,3)(2,4), (1,4,2)], [(2,4,3), (1,4,3), (1,2)(3,4)], [(1,2,4), (1,4)(2,3), (1,3,4)]] >>> lc = A.cosets(stabilizer, side='left'); lc [[(), (1,2,3), (1,3,2)], [(2,3,4), (1,2)(3,4), (1,3,4)], [(2,4,3), (1,2,4), (1,3)(2,4)], [(1,4,2), (1,4,3), (1,4)(2,3)]] >>> stabilizer.is_normal(A) False >>> rc_sorted = [sorted(c) for c in rc] >>> lc_sorted = [sorted(c) for c in lc] >>> rc_sorted == lc_sorted False
AUTHOR:
Rob Beezer (2011-01-31)
- degree()[source]#
Return the degree of this permutation group.
EXAMPLES:
sage: S = SymmetricGroup(['a','b','c']) sage: S.degree() 3 sage: G = PermutationGroup([(1,3),(4,5)]) sage: G.degree() 5
>>> from sage.all import * >>> S = SymmetricGroup(['a','b','c']) >>> S.degree() 3 >>> G = PermutationGroup([(Integer(1),Integer(3)),(Integer(4),Integer(5))]) >>> G.degree() 5
Note that you can explicitly specify the domain to get a permutation group of smaller degree:
sage: G = PermutationGroup([(1,3),(4,5)], domain=[1,3,4,5]) sage: G.degree() 4
>>> from sage.all import * >>> G = PermutationGroup([(Integer(1),Integer(3)),(Integer(4),Integer(5))], domain=[Integer(1),Integer(3),Integer(4),Integer(5)]) >>> G.degree() 4
- derived_series()[source]#
Return the derived series of this group as a list of permutation groups.
EXAMPLES:
These computations use pseudo-random numbers, so we set the seed for reproducible testing.
sage: set_random_seed(0) sage: G = PermutationGroup([[(1,2,3),(4,5)],[(3,4)]]) sage: G.derived_series() [Subgroup generated by [(3,4), (1,2,3)(4,5)] of (Permutation Group with generators [(3,4), (1,2,3)(4,5)]), Subgroup generated by [(1,5)(3,4), (1,5)(2,4), (1,3,5)] of (Permutation Group with generators [(3,4), (1,2,3)(4,5)])]
>>> from sage.all import * >>> set_random_seed(Integer(0)) >>> G = PermutationGroup([[(Integer(1),Integer(2),Integer(3)),(Integer(4),Integer(5))],[(Integer(3),Integer(4))]]) >>> G.derived_series() [Subgroup generated by [(3,4), (1,2,3)(4,5)] of (Permutation Group with generators [(3,4), (1,2,3)(4,5)]), Subgroup generated by [(1,5)(3,4), (1,5)(2,4), (1,3,5)] of (Permutation Group with generators [(3,4), (1,2,3)(4,5)])]
- direct_product(other, maps=True)[source]#
Wraps GAP’s
DirectProduct
,Embedding
, andProjection
.Sage calls GAP’s
DirectProduct
, which chooses an efficient representation for the direct product. The direct product of permutation groups will be a permutation group again. For a direct productD
, the GAP operationEmbedding(D,i)
returns the homomorphism embedding the i-th factor intoD
. The GAP operationProjection(D,i)
gives the projection ofD
onto the i-th factor. This method returns a 5-tuple: a permutation group and 4 morphisms.INPUT:
self
,other
– permutation groups
OUTPUT:
D
– a direct product of the inputs, returned as a permutation group as welliota1
– an embedding ofself
intoD
iota2
– an embedding ofother
intoD
pr1
– the projection ofD
ontoself
(giving a splitting1 - other - D - self - 1
)pr2
– the projection ofD
ontoother
(giving a splitting1 - self - D - other - 1
)
EXAMPLES:
sage: G = CyclicPermutationGroup(4) sage: D = G.direct_product(G, False); D Permutation Group with generators [(1,2,3,4), (5,6,7,8)] sage: D,iota1,iota2,pr1,pr2 = G.direct_product(G) sage: D; iota1; iota2; pr1; pr2 Permutation Group with generators [(1,2,3,4), (5,6,7,8)] Permutation group morphism: From: Cyclic group of order 4 as a permutation group To: Permutation Group with generators [(1,2,3,4), (5,6,7,8)] Defn: Embedding( Group( [ (1,2,3,4), (5,6,7,8) ] ), 1 ) Permutation group morphism: From: Cyclic group of order 4 as a permutation group To: Permutation Group with generators [(1,2,3,4), (5,6,7,8)] Defn: Embedding( Group( [ (1,2,3,4), (5,6,7,8) ] ), 2 ) Permutation group morphism: From: Permutation Group with generators [(1,2,3,4), (5,6,7,8)] To: Cyclic group of order 4 as a permutation group Defn: Projection( Group( [ (1,2,3,4), (5,6,7,8) ] ), 1 ) Permutation group morphism: From: Permutation Group with generators [(1,2,3,4), (5,6,7,8)] To: Cyclic group of order 4 as a permutation group Defn: Projection( Group( [ (1,2,3,4), (5,6,7,8) ] ), 2 ) sage: g = D([(1,3),(2,4)]); g (1,3)(2,4) sage: d = D([(1,4,3,2),(5,7),(6,8)]); d (1,4,3,2)(5,7)(6,8) sage: iota1(g); iota2(g); pr1(d); pr2(d) (1,3)(2,4) (5,7)(6,8) (1,4,3,2) (1,3)(2,4)
>>> from sage.all import * >>> G = CyclicPermutationGroup(Integer(4)) >>> D = G.direct_product(G, False); D Permutation Group with generators [(1,2,3,4), (5,6,7,8)] >>> D,iota1,iota2,pr1,pr2 = G.direct_product(G) >>> D; iota1; iota2; pr1; pr2 Permutation Group with generators [(1,2,3,4), (5,6,7,8)] Permutation group morphism: From: Cyclic group of order 4 as a permutation group To: Permutation Group with generators [(1,2,3,4), (5,6,7,8)] Defn: Embedding( Group( [ (1,2,3,4), (5,6,7,8) ] ), 1 ) Permutation group morphism: From: Cyclic group of order 4 as a permutation group To: Permutation Group with generators [(1,2,3,4), (5,6,7,8)] Defn: Embedding( Group( [ (1,2,3,4), (5,6,7,8) ] ), 2 ) Permutation group morphism: From: Permutation Group with generators [(1,2,3,4), (5,6,7,8)] To: Cyclic group of order 4 as a permutation group Defn: Projection( Group( [ (1,2,3,4), (5,6,7,8) ] ), 1 ) Permutation group morphism: From: Permutation Group with generators [(1,2,3,4), (5,6,7,8)] To: Cyclic group of order 4 as a permutation group Defn: Projection( Group( [ (1,2,3,4), (5,6,7,8) ] ), 2 ) >>> g = D([(Integer(1),Integer(3)),(Integer(2),Integer(4))]); g (1,3)(2,4) >>> d = D([(Integer(1),Integer(4),Integer(3),Integer(2)),(Integer(5),Integer(7)),(Integer(6),Integer(8))]); d (1,4,3,2)(5,7)(6,8) >>> iota1(g); iota2(g); pr1(d); pr2(d) (1,3)(2,4) (5,7)(6,8) (1,4,3,2) (1,3)(2,4)
- domain()[source]#
Return the underlying set that this permutation group acts on.
EXAMPLES:
sage: P = PermutationGroup([(1,2),(3,5)]) sage: P.domain() {1, 2, 3, 4, 5} sage: S = SymmetricGroup(['a', 'b', 'c']) sage: S.domain() {'a', 'b', 'c'}
>>> from sage.all import * >>> P = PermutationGroup([(Integer(1),Integer(2)),(Integer(3),Integer(5))]) >>> P.domain() {1, 2, 3, 4, 5} >>> S = SymmetricGroup(['a', 'b', 'c']) >>> S.domain() {'a', 'b', 'c'}
- exponent()[source]#
Computes the exponent of the group.
The exponent \(e\) of a group \(G\) is the LCM of the orders of its elements, that is, \(e\) is the smallest integer such that \(g^e=1\) for all \(g \in G\).
EXAMPLES:
sage: G = AlternatingGroup(4) sage: G.exponent() 6
>>> from sage.all import * >>> G = AlternatingGroup(Integer(4)) >>> G.exponent() 6
- fitting_subgroup()[source]#
Return the Fitting subgroup of
self
.The Fitting subgroup of a group \(G\) is the largest nilpotent normal subgroup of \(G\).
EXAMPLES:
sage: G = PermutationGroup([[(1,2,3,4)],[(2,4)]]) sage: G.fitting_subgroup() Subgroup generated by [(2,4), (1,2,3,4), (1,3)] of (Permutation Group with generators [(2,4), (1,2,3,4)]) sage: G = PermutationGroup([[(1,2,3,4)],[(1,2)]]) sage: G.fitting_subgroup() Subgroup generated by [(1,2)(3,4), (1,3)(2,4)] of (Permutation Group with generators [(1,2), (1,2,3,4)])
>>> from sage.all import * >>> G = PermutationGroup([[(Integer(1),Integer(2),Integer(3),Integer(4))],[(Integer(2),Integer(4))]]) >>> G.fitting_subgroup() Subgroup generated by [(2,4), (1,2,3,4), (1,3)] of (Permutation Group with generators [(2,4), (1,2,3,4)]) >>> G = PermutationGroup([[(Integer(1),Integer(2),Integer(3),Integer(4))],[(Integer(1),Integer(2))]]) >>> G.fitting_subgroup() Subgroup generated by [(1,2)(3,4), (1,3)(2,4)] of (Permutation Group with generators [(1,2), (1,2,3,4)])
- fixed_points()[source]#
Return the list of points fixed by
self
, i.e., the subset of.domain()
not moved by any element ofself
.EXAMPLES:
sage: G = PermutationGroup([(1,2,3)]) sage: G.fixed_points() [] sage: G = PermutationGroup([(1,2,3),(5,6)]) sage: G.fixed_points() [4] sage: G = PermutationGroup([[(1,4,7)],[(4,3),(6,7)]]) sage: G.fixed_points() [2, 5]
>>> from sage.all import * >>> G = PermutationGroup([(Integer(1),Integer(2),Integer(3))]) >>> G.fixed_points() [] >>> G = PermutationGroup([(Integer(1),Integer(2),Integer(3)),(Integer(5),Integer(6))]) >>> G.fixed_points() [4] >>> G = PermutationGroup([[(Integer(1),Integer(4),Integer(7))],[(Integer(4),Integer(3)),(Integer(6),Integer(7))]]) >>> G.fixed_points() [2, 5]
- frattini_subgroup()[source]#
Return the Frattini subgroup of
self
.The Frattini subgroup of a group \(G\) is the intersection of all maximal subgroups of \(G\).
EXAMPLES:
sage: G = PermutationGroup([[(1,2,3,4)],[(2,4)]]) sage: G.frattini_subgroup() Subgroup generated by [(1,3)(2,4)] of (Permutation Group with generators [(2,4), (1,2,3,4)]) sage: G = SymmetricGroup(4) sage: G.frattini_subgroup() Subgroup generated by [()] of (Symmetric group of order 4! as a permutation group)
>>> from sage.all import * >>> G = PermutationGroup([[(Integer(1),Integer(2),Integer(3),Integer(4))],[(Integer(2),Integer(4))]]) >>> G.frattini_subgroup() Subgroup generated by [(1,3)(2,4)] of (Permutation Group with generators [(2,4), (1,2,3,4)]) >>> G = SymmetricGroup(Integer(4)) >>> G.frattini_subgroup() Subgroup generated by [()] of (Symmetric group of order 4! as a permutation group)
- gap()[source]#
This method from
sage.groups.libgap_wrapper.ParentLibGAP
is added in order to achieve compatibility and havesage.groups.libgap_morphism.GroupHomset_libgap
work for permutation groups, as wellOUTPUT: an instance of
sage.libs.gap.element.GapElement
representing this groupEXAMPLES:
sage: P8 = PSp(8,3) sage: P8.gap() <permutation group of size 65784756654489600 with 2 generators> sage: gap(P8) == P8.gap() False sage: S3 = SymmetricGroup(3) sage: S3.gap() Sym( [ 1 .. 3 ] ) sage: gap(S3) == S3.gap() False
>>> from sage.all import * >>> P8 = PSp(Integer(8),Integer(3)) >>> P8.gap() <permutation group of size 65784756654489600 with 2 generators> >>> gap(P8) == P8.gap() False >>> S3 = SymmetricGroup(Integer(3)) >>> S3.gap() Sym( [ 1 .. 3 ] ) >>> gap(S3) == S3.gap() False
- gen(i=None)[source]#
Return the \(i\)-th generator of
self
; that is, the \(i\)-th element of the listself.gens()
.The argument \(i\) may be omitted if there is only one generator (but this will raise an error otherwise).
EXAMPLES:
We explicitly construct the alternating group on four elements:
sage: A4 = PermutationGroup([[(1,2,3)],[(2,3,4)]]); A4 Permutation Group with generators [(2,3,4), (1,2,3)] sage: A4.gens() ((2,3,4), (1,2,3)) sage: A4.gen(0) (2,3,4) sage: A4.gen(1) (1,2,3) sage: A4.gens()[0]; A4.gens()[1] (2,3,4) (1,2,3) sage: P1 = PermutationGroup([[(1,2)]]); P1.gen() (1,2)
>>> from sage.all import * >>> A4 = PermutationGroup([[(Integer(1),Integer(2),Integer(3))],[(Integer(2),Integer(3),Integer(4))]]); A4 Permutation Group with generators [(2,3,4), (1,2,3)] >>> A4.gens() ((2,3,4), (1,2,3)) >>> A4.gen(Integer(0)) (2,3,4) >>> A4.gen(Integer(1)) (1,2,3) >>> A4.gens()[Integer(0)]; A4.gens()[Integer(1)] (2,3,4) (1,2,3) >>> P1 = PermutationGroup([[(Integer(1),Integer(2))]]); P1.gen() (1,2)
- gens()[source]#
Return tuple of generators of this group.
These need not be minimal, as they are the generators used in defining this group.
EXAMPLES:
sage: G = PermutationGroup([[(1,2,3)], [(1,2)]]) sage: G.gens() ((1,2), (1,2,3))
>>> from sage.all import * >>> G = PermutationGroup([[(Integer(1),Integer(2),Integer(3))], [(Integer(1),Integer(2))]]) >>> G.gens() ((1,2), (1,2,3))
Note that the generators need not be minimal, though duplicates are removed:
sage: G = PermutationGroup([[(1,2)], [(1,3)], [(2,3)], [(1,2)]]) sage: G.gens() ((2,3), (1,2), (1,3))
>>> from sage.all import * >>> G = PermutationGroup([[(Integer(1),Integer(2))], [(Integer(1),Integer(3))], [(Integer(2),Integer(3))], [(Integer(1),Integer(2))]]) >>> G.gens() ((2,3), (1,2), (1,3))
We can use index notation to access the generators returned by
self.gens
:sage: G = PermutationGroup([[(1,2,3,4), (5,6)], [(1,2)]]) sage: g = G.gens() sage: g[0] (1,2) sage: g[1] (1,2,3,4)(5,6)
>>> from sage.all import * >>> G = PermutationGroup([[(Integer(1),Integer(2),Integer(3),Integer(4)), (Integer(5),Integer(6))], [(Integer(1),Integer(2))]]) >>> g = G.gens() >>> g[Integer(0)] (1,2) >>> g[Integer(1)] (1,2,3,4)(5,6)
- gens_small()[source]#
For this group, returns a generating set which has few elements.
As neither irredundancy nor minimal length is proven, it is fast.
EXAMPLES:
sage: R = "(25,27,32,30)(26,29,31,28)( 3,38,43,19)( 5,36,45,21)( 8,33,48,24)" ## R = right sage: U = "( 1, 3, 8, 6)( 2, 5, 7, 4)( 9,33,25,17)(10,34,26,18)(11,35,27,19)" ## U = top sage: L = "( 9,11,16,14)(10,13,15,12)( 1,17,41,40)( 4,20,44,37)( 6,22,46,35)" ## L = left sage: F = "(17,19,24,22)(18,21,23,20)( 6,25,43,16)( 7,28,42,13)( 8,30,41,11)" ## F = front sage: B = "(33,35,40,38)(34,37,39,36)( 3, 9,46,32)( 2,12,47,29)( 1,14,48,27)" ## B = back or rear sage: D = "(41,43,48,46)(42,45,47,44)(14,22,30,38)(15,23,31,39)(16,24,32,40)" ## D = down or bottom sage: G = PermutationGroup([R,L,U,F,B,D]) sage: len(G.gens_small()) 2
>>> from sage.all import * >>> R = "(25,27,32,30)(26,29,31,28)( 3,38,43,19)( 5,36,45,21)( 8,33,48,24)" ## R = right >>> U = "( 1, 3, 8, 6)( 2, 5, 7, 4)( 9,33,25,17)(10,34,26,18)(11,35,27,19)" ## U = top >>> L = "( 9,11,16,14)(10,13,15,12)( 1,17,41,40)( 4,20,44,37)( 6,22,46,35)" ## L = left >>> F = "(17,19,24,22)(18,21,23,20)( 6,25,43,16)( 7,28,42,13)( 8,30,41,11)" ## F = front >>> B = "(33,35,40,38)(34,37,39,36)( 3, 9,46,32)( 2,12,47,29)( 1,14,48,27)" ## B = back or rear >>> D = "(41,43,48,46)(42,45,47,44)(14,22,30,38)(15,23,31,39)(16,24,32,40)" ## D = down or bottom >>> G = PermutationGroup([R,L,U,F,B,D]) >>> len(G.gens_small()) 2
The output may be unpredictable, due to the use of randomized algorithms in GAP. Note that both the following answers are equally valid.
sage: G = PermutationGroup([[('a','b')], [('b', 'c')], [('a', 'c')]]) sage: G.gens_small() # random [('b','c'), ('a','c','b')] ## (on 64-bit Linux) [('a','b'), ('a','c','b')] ## (on Solaris) sage: len(G.gens_small()) == 2 # random True
>>> from sage.all import * >>> G = PermutationGroup([[('a','b')], [('b', 'c')], [('a', 'c')]]) >>> G.gens_small() # random [('b','c'), ('a','c','b')] ## (on 64-bit Linux) [('a','b'), ('a','c','b')] ## (on Solaris) >>> len(G.gens_small()) == Integer(2) # random True
- group_id()[source]#
Return the ID code of this group, which is a list of two integers.
EXAMPLES:
sage: G = PermutationGroup([[(1,2,3),(4,5)], [(1,2)]]) sage: G.group_id() [12, 4]
>>> from sage.all import * >>> G = PermutationGroup([[(Integer(1),Integer(2),Integer(3)),(Integer(4),Integer(5))], [(Integer(1),Integer(2))]]) >>> G.group_id() [12, 4]
- group_primitive_id()[source]#
Return the index of this group in the GAP database of primitive groups.
OUTPUT:
A positive integer, following GAP’s conventions. A
ValueError
is raised if the group is not primitive.EXAMPLES:
sage: G = PermutationGroup([[(1,2,3,4,5)], [(1,5),(2,4)]]) sage: G.group_primitive_id() 2 sage: G.degree() 5
>>> from sage.all import * >>> G = PermutationGroup([[(Integer(1),Integer(2),Integer(3),Integer(4),Integer(5))], [(Integer(1),Integer(5)),(Integer(2),Integer(4))]]) >>> G.group_primitive_id() 2 >>> G.degree() 5
From the information of the degree and the identification number, you can recover the isomorphism class of your group in the GAP database:
sage: H = PrimitiveGroup(5,2) sage: G == H False sage: G.is_isomorphic(H) True
>>> from sage.all import * >>> H = PrimitiveGroup(Integer(5),Integer(2)) >>> G == H False >>> G.is_isomorphic(H) True
- has_element(item)[source]#
Return whether
item
is an element of this group - however ignores parentage.EXAMPLES:
sage: G = CyclicPermutationGroup(4) sage: gens = G.gens() sage: H = DihedralGroup(4) sage: g = G([(1,2,3,4)]); g (1,2,3,4) sage: G.has_element(g) doctest:warning ... DeprecationWarning: G.has_element(g) is deprecated; use :meth:`__contains__`, i.e., `g in G` instead See https://github.com/sagemath/sage/issues/33831 for details. True sage: h = H([(1,2),(3,4)]); h (1,2)(3,4) sage: G.has_element(h) False
>>> from sage.all import * >>> G = CyclicPermutationGroup(Integer(4)) >>> gens = G.gens() >>> H = DihedralGroup(Integer(4)) >>> g = G([(Integer(1),Integer(2),Integer(3),Integer(4))]); g (1,2,3,4) >>> G.has_element(g) doctest:warning ... DeprecationWarning: G.has_element(g) is deprecated; use :meth:`__contains__`, i.e., `g in G` instead See https://github.com/sagemath/sage/issues/33831 for details. True >>> h = H([(Integer(1),Integer(2)),(Integer(3),Integer(4))]); h (1,2)(3,4) >>> G.has_element(h) False
- has_regular_subgroup(return_group=False)[source]#
Return whether the group contains a regular subgroup.
INPUT:
return_group
– (boolean) IfTrue
, a regular subgroup is returned if there is one, andNone
if there isn’t. Whenreturn_group=False
(default), only a boolean indicating whether such a group exists is returned instead.
EXAMPLES:
The symmetric group on 4 elements has a regular subgroup:
sage: S4 = groups.permutation.Symmetric(4) sage: S4.has_regular_subgroup() True sage: S4.has_regular_subgroup(return_group=True) # random Subgroup of (Symmetric group of order 4! as a permutation group) generated by [(1,3)(2,4), (1,4)(2,3)]
>>> from sage.all import * >>> S4 = groups.permutation.Symmetric(Integer(4)) >>> S4.has_regular_subgroup() True >>> S4.has_regular_subgroup(return_group=True) # random Subgroup of (Symmetric group of order 4! as a permutation group) generated by [(1,3)(2,4), (1,4)(2,3)]
But the automorphism group of Petersen’s graph does not:
sage: # needs sage.graphs sage: G = graphs.PetersenGraph().automorphism_group() sage: G.has_regular_subgroup() False
>>> from sage.all import * >>> # needs sage.graphs >>> G = graphs.PetersenGraph().automorphism_group() >>> G.has_regular_subgroup() False
- holomorph()[source]#
The holomorph of a group as a permutation group.
The holomorph of a group \(G\) is the semidirect product \(G \rtimes_{id} Aut(G)\), where \(id\) is the identity function on \(Aut(G)\), the automorphism group of \(G\).
See Wikipedia article Holomorph (mathematics)
OUTPUT: the holomorph of a given group as permutation group via a wrapping of GAP’s semidirect product function
EXAMPLES:
Thomas and Wood’s ‘Group Tables’ (Shiva Publishing, 1980) tells us that the holomorph of \(C_5\) is the unique group of order 20 with a trivial center.
sage: C5 = CyclicPermutationGroup(5) sage: A = C5.holomorph() sage: A.order() 20 sage: A.is_abelian() False sage: A.center() Subgroup generated by [()] of (Permutation Group with generators [(5,6,7,8,9), (1,2,4,3)(6,7,9,8)]) sage: A Permutation Group with generators [(5,6,7,8,9), (1,2,4,3)(6,7,9,8)]
>>> from sage.all import * >>> C5 = CyclicPermutationGroup(Integer(5)) >>> A = C5.holomorph() >>> A.order() 20 >>> A.is_abelian() False >>> A.center() Subgroup generated by [()] of (Permutation Group with generators [(5,6,7,8,9), (1,2,4,3)(6,7,9,8)]) >>> A Permutation Group with generators [(5,6,7,8,9), (1,2,4,3)(6,7,9,8)]
Noting that the automorphism group of \(D_4\) is itself \(D_4\), it can easily be shown that the holomorph is indeed an internal semidirect product of these two groups.
sage: D4 = DihedralGroup(4) sage: H = D4.holomorph() sage: H.gens() ((2,3,5,8), (2,5)(3,8), (3,8)(4,7), (1,4,6,7)(2,3,5,8), (1,8)(2,7)(3,6)(4,5)) sage: G = H.subgroup([H.gens()[0],H.gens()[1],H.gens()[2]]) sage: N = H.subgroup([H.gens()[3],H.gens()[4]]) sage: N.is_normal(H) True sage: G.is_isomorphic(D4) True sage: N.is_isomorphic(D4) True sage: G.intersection(N) Permutation Group with generators [()] sage: L = [H(x)*H(y) for x in G for y in N]; L.sort() sage: L1 = H.list(); L1.sort() sage: L == L1 True
>>> from sage.all import * >>> D4 = DihedralGroup(Integer(4)) >>> H = D4.holomorph() >>> H.gens() ((2,3,5,8), (2,5)(3,8), (3,8)(4,7), (1,4,6,7)(2,3,5,8), (1,8)(2,7)(3,6)(4,5)) >>> G = H.subgroup([H.gens()[Integer(0)],H.gens()[Integer(1)],H.gens()[Integer(2)]]) >>> N = H.subgroup([H.gens()[Integer(3)],H.gens()[Integer(4)]]) >>> N.is_normal(H) True >>> G.is_isomorphic(D4) True >>> N.is_isomorphic(D4) True >>> G.intersection(N) Permutation Group with generators [()] >>> L = [H(x)*H(y) for x in G for y in N]; L.sort() >>> L1 = H.list(); L1.sort() >>> L == L1 True
Author:
Kevin Halasz (2012-08-14)
- homology(n, p=0)[source]#
Computes the group homology \(H_n(G, F)\), where \(F = \ZZ\) if \(p=0\) and \(F = \ZZ / p \ZZ\) if \(p > 0\) is a prime. Wraps HAP’s
GroupHomology
function, written by Graham Ellis.REQUIRES: GAP package HAP (in gap_packages-*.spkg).
AUTHORS:
David Joyner and Graham Ellis
The example below computes \(H_7(S_5, \ZZ)\), \(H_7(S_5, \ZZ / 2 \ZZ)\), \(H_7(S_5, \ZZ / 3 \ZZ)\), and \(H_7(S_5, \ZZ / 5 \ZZ)\), respectively. To compute the \(2\)-part of \(H_7(S_5, \ZZ)\), use the method
homology_part()
.EXAMPLES:
sage: G = SymmetricGroup(5) sage: G.homology(7) # optional - gap_package_hap Multiplicative Abelian group isomorphic to C2 x C2 x C4 x C3 x C5 sage: G.homology(7,2) # optional - gap_package_hap Multiplicative Abelian group isomorphic to C2 x C2 x C2 x C2 x C2 sage: G.homology(7,3) # optional - gap_package_hap Multiplicative Abelian group isomorphic to C3 sage: G.homology(7,5) # optional - gap_package_hap Multiplicative Abelian group isomorphic to C5
>>> from sage.all import * >>> G = SymmetricGroup(Integer(5)) >>> G.homology(Integer(7)) # optional - gap_package_hap Multiplicative Abelian group isomorphic to C2 x C2 x C4 x C3 x C5 >>> G.homology(Integer(7),Integer(2)) # optional - gap_package_hap Multiplicative Abelian group isomorphic to C2 x C2 x C2 x C2 x C2 >>> G.homology(Integer(7),Integer(3)) # optional - gap_package_hap Multiplicative Abelian group isomorphic to C3 >>> G.homology(Integer(7),Integer(5)) # optional - gap_package_hap Multiplicative Abelian group isomorphic to C5
REFERENCES:
G. Ellis, “Computing group resolutions”, J. Symbolic Computation. Vol.38, (2004)1077-1118 (Available at http://hamilton.nuigalway.ie/.
D. Joyner, “A primer on computational group homology and cohomology”, http://front.math.ucdavis.edu/0706.0549
- homology_part(n, p=0)[source]#
Computes the \(p\)-part of the group homology \(H_n(G, F)\), where \(F = \ZZ\) if \(p=0\) and \(F = \ZZ / p \ZZ\) if \(p > 0\) is a prime. Wraps HAP’s
Homology
function, written by Graham Ellis, applied to the \(p\)-Sylow subgroup of \(G\).REQUIRES: GAP package HAP (in gap_packages-*.spkg).
EXAMPLES:
sage: G = SymmetricGroup(5) sage: G.homology_part(7,2) # optional - gap_package_hap Multiplicative Abelian group isomorphic to C2 x C2 x C2 x C2 x C4
>>> from sage.all import * >>> G = SymmetricGroup(Integer(5)) >>> G.homology_part(Integer(7),Integer(2)) # optional - gap_package_hap Multiplicative Abelian group isomorphic to C2 x C2 x C2 x C2 x C4
AUTHORS:
David Joyner and Graham Ellis
- id()[source]#
Return the ID code of this group, which is a list of two integers.
Same as
group_id()
.EXAMPLES:
sage: G = PermutationGroup([[(1,2,3),(4,5)], [(1,2)]]) sage: G.group_id() [12, 4]
>>> from sage.all import * >>> G = PermutationGroup([[(Integer(1),Integer(2),Integer(3)),(Integer(4),Integer(5))], [(Integer(1),Integer(2))]]) >>> G.group_id() [12, 4]
- identity()[source]#
Return the identity element of this group.
EXAMPLES:
sage: G = PermutationGroup([[(1,2,3),(4,5)]]) sage: e = G.identity(); e # indirect doctest () sage: g = G.gen(0) sage: g*e (1,2,3)(4,5) sage: e*g (1,2,3)(4,5) sage: S = SymmetricGroup(['a','b','c']) sage: S.identity() ()
>>> from sage.all import * >>> G = PermutationGroup([[(Integer(1),Integer(2),Integer(3)),(Integer(4),Integer(5))]]) >>> e = G.identity(); e # indirect doctest () >>> g = G.gen(Integer(0)) >>> g*e (1,2,3)(4,5) >>> e*g (1,2,3)(4,5) >>> S = SymmetricGroup(['a','b','c']) >>> S.identity() ()
- intersection(other)[source]#
Return the permutation group that is the intersection of
self
andother
.INPUT:
other
– a permutation group.
OUTPUT:
A permutation group that is the set-theoretic intersection of
self
withother
. The groups are viewed as subgroups of a symmetric group big enough to contain both group’s symbol sets. So there is no strict notion of the two groups being subgroups of a common parent.EXAMPLES:
sage: H = DihedralGroup(4) sage: K = CyclicPermutationGroup(4) sage: H.intersection(K) Permutation Group with generators [(1,2,3,4)] sage: L = DihedralGroup(5) sage: H.intersection(L) Permutation Group with generators [(1,4)(2,3)] sage: M = PermutationGroup(["()"]) sage: H.intersection(M) Permutation Group with generators [()]
>>> from sage.all import * >>> H = DihedralGroup(Integer(4)) >>> K = CyclicPermutationGroup(Integer(4)) >>> H.intersection(K) Permutation Group with generators [(1,2,3,4)] >>> L = DihedralGroup(Integer(5)) >>> H.intersection(L) Permutation Group with generators [(1,4)(2,3)] >>> M = PermutationGroup(["()"]) >>> H.intersection(M) Permutation Group with generators [()]
Some basic properties.
sage: H = DihedralGroup(4) sage: L = DihedralGroup(5) sage: H.intersection(L) == L.intersection(H) True sage: H.intersection(H) == H True
>>> from sage.all import * >>> H = DihedralGroup(Integer(4)) >>> L = DihedralGroup(Integer(5)) >>> H.intersection(L) == L.intersection(H) True >>> H.intersection(H) == H True
The group
other
is verified as such.sage: H = DihedralGroup(4) sage: H.intersection('junk') Traceback (most recent call last): ... TypeError: junk is not a permutation group
>>> from sage.all import * >>> H = DihedralGroup(Integer(4)) >>> H.intersection('junk') Traceback (most recent call last): ... TypeError: junk is not a permutation group
- irreducible_characters()[source]#
Return a list of the irreducible characters of
self
.EXAMPLES:
sage: irr = SymmetricGroup(3).irreducible_characters() # needs sage.rings.number_field sage: [x.values() for x in irr] # needs sage.rings.number_field [[1, -1, 1], [2, 0, -1], [1, 1, 1]]
>>> from sage.all import * >>> irr = SymmetricGroup(Integer(3)).irreducible_characters() # needs sage.rings.number_field >>> [x.values() for x in irr] # needs sage.rings.number_field [[1, -1, 1], [2, 0, -1], [1, 1, 1]]
- is_abelian()[source]#
Return
True
if this group is abelian.EXAMPLES:
sage: G = PermutationGroup(['(1,2,3)(4,5)', '(1,2,3,4,5)']) sage: G.is_abelian() False sage: G = PermutationGroup(['(1,2,3)(4,5)']) sage: G.is_abelian() True
>>> from sage.all import * >>> G = PermutationGroup(['(1,2,3)(4,5)', '(1,2,3,4,5)']) >>> G.is_abelian() False >>> G = PermutationGroup(['(1,2,3)(4,5)']) >>> G.is_abelian() True
- is_commutative()[source]#
Return
True
if this group is commutative.EXAMPLES:
sage: G = PermutationGroup(['(1,2,3)(4,5)', '(1,2,3,4,5)']) sage: G.is_commutative() False sage: G = PermutationGroup(['(1,2,3)(4,5)']) sage: G.is_commutative() True
>>> from sage.all import * >>> G = PermutationGroup(['(1,2,3)(4,5)', '(1,2,3,4,5)']) >>> G.is_commutative() False >>> G = PermutationGroup(['(1,2,3)(4,5)']) >>> G.is_commutative() True
- is_cyclic()[source]#
Return
True
if this group is cyclic.EXAMPLES:
sage: G = PermutationGroup(['(1,2,3)(4,5)', '(1,2,3,4,5)']) sage: G.is_cyclic() False sage: G = PermutationGroup(['(1,2,3)(4,5)']) sage: G.is_cyclic() True
>>> from sage.all import * >>> G = PermutationGroup(['(1,2,3)(4,5)', '(1,2,3,4,5)']) >>> G.is_cyclic() False >>> G = PermutationGroup(['(1,2,3)(4,5)']) >>> G.is_cyclic() True
- is_elementary_abelian()[source]#
Return
True
if this group is elementary abelian. An elementary abelian group is a finite abelian group, where every nontrivial element has order \(p\), where \(p\) is a prime.EXAMPLES:
sage: G = PermutationGroup(['(1,2,3)(4,5)', '(1,2,3,4,5)']) sage: G.is_elementary_abelian() False sage: G = PermutationGroup(['(1,2,3)','(4,5,6)']) sage: G.is_elementary_abelian() True
>>> from sage.all import * >>> G = PermutationGroup(['(1,2,3)(4,5)', '(1,2,3,4,5)']) >>> G.is_elementary_abelian() False >>> G = PermutationGroup(['(1,2,3)','(4,5,6)']) >>> G.is_elementary_abelian() True
- is_isomorphic(right)[source]#
Return
True
if the groups are isomorphic.INPUT:
self
– this groupright
– a permutation group
OUTPUT: boolean;
True
ifself
andright
are isomorphic groups;False
otherwiseEXAMPLES:
sage: v = ['(1,2,3)(4,5)', '(1,2,3,4,5)'] sage: G = PermutationGroup(v) sage: H = PermutationGroup(['(1,2,3)(4,5)']) sage: G.is_isomorphic(H) False sage: G.is_isomorphic(G) True sage: G.is_isomorphic(PermutationGroup(list(reversed(v)))) True
>>> from sage.all import * >>> v = ['(1,2,3)(4,5)', '(1,2,3,4,5)'] >>> G = PermutationGroup(v) >>> H = PermutationGroup(['(1,2,3)(4,5)']) >>> G.is_isomorphic(H) False >>> G.is_isomorphic(G) True >>> G.is_isomorphic(PermutationGroup(list(reversed(v)))) True
- is_monomial()[source]#
Return
True
if the group is monomial. A finite group is monomial if every irreducible complex character is induced from a linear character of a subgroup.EXAMPLES:
sage: G = PermutationGroup(['(1,2,3)(4,5)']) sage: G.is_monomial() True
>>> from sage.all import * >>> G = PermutationGroup(['(1,2,3)(4,5)']) >>> G.is_monomial() True
- is_nilpotent()[source]#
Return
True
if this group is nilpotent.EXAMPLES:
sage: G = PermutationGroup(['(1,2,3)(4,5)', '(1,2,3,4,5)']) sage: G.is_nilpotent() False sage: G = PermutationGroup(['(1,2,3)(4,5)']) sage: G.is_nilpotent() True
>>> from sage.all import * >>> G = PermutationGroup(['(1,2,3)(4,5)', '(1,2,3,4,5)']) >>> G.is_nilpotent() False >>> G = PermutationGroup(['(1,2,3)(4,5)']) >>> G.is_nilpotent() True
- is_normal(other)[source]#
Return
True
if this group is a normal subgroup ofother
.EXAMPLES:
sage: AlternatingGroup(4).is_normal(SymmetricGroup(4)) True sage: H = PermutationGroup(['(1,2,3)(4,5)']) sage: G = PermutationGroup(['(1,2,3)(4,5)', '(1,2,3,4,5)']) sage: H.is_normal(G) False
>>> from sage.all import * >>> AlternatingGroup(Integer(4)).is_normal(SymmetricGroup(Integer(4))) True >>> H = PermutationGroup(['(1,2,3)(4,5)']) >>> G = PermutationGroup(['(1,2,3)(4,5)', '(1,2,3,4,5)']) >>> H.is_normal(G) False
- is_perfect()[source]#
Return
True
if this group is perfect. A group is perfect if it equals its derived subgroup.EXAMPLES:
sage: G = PermutationGroup(['(1,2,3)(4,5)', '(1,2,3,4,5)']) sage: G.is_perfect() False sage: G = PermutationGroup(['(1,2,3)(4,5)']) sage: G.is_perfect() False
>>> from sage.all import * >>> G = PermutationGroup(['(1,2,3)(4,5)', '(1,2,3,4,5)']) >>> G.is_perfect() False >>> G = PermutationGroup(['(1,2,3)(4,5)']) >>> G.is_perfect() False
- is_pgroup()[source]#
Return
True
if this group is a \(p\)-group.A finite group is a \(p\)-group if its order is of the form \(p^n\) for a prime integer \(p\) and a nonnegative integer \(n\).
EXAMPLES:
sage: G = PermutationGroup(['(1,2,3,4,5)']) sage: G.is_pgroup() True
>>> from sage.all import * >>> G = PermutationGroup(['(1,2,3,4,5)']) >>> G.is_pgroup() True
- is_polycyclic()[source]#
Return
True
if this group is polycyclic. A group is polycyclic if it has a subnormal series with cyclic factors. (For finite groups, this is the same as if the group is solvable - seeis_solvable()
.)EXAMPLES:
sage: G = PermutationGroup(['(1,2,3)(4,5)', '(1,2,3,4,5)']) sage: G.is_polycyclic() False sage: G = PermutationGroup(['(1,2,3)(4,5)']) sage: G.is_polycyclic() True
>>> from sage.all import * >>> G = PermutationGroup(['(1,2,3)(4,5)', '(1,2,3,4,5)']) >>> G.is_polycyclic() False >>> G = PermutationGroup(['(1,2,3)(4,5)']) >>> G.is_polycyclic() True
- is_primitive(domain=None)[source]#
Return
True
ifself
acts primitively ondomain
.A group \(G\) acts primitively on a set \(S\) if
\(G\) acts transitively on \(S\) and
the action induces no non-trivial block system on \(S\).
INPUT:
domain
(optional)
See also
EXAMPLES:
By default, test for primitivity of
self
on its domain:sage: G = PermutationGroup([[(1,2,3,4)],[(1,2)]]) sage: G.is_primitive() True sage: G = PermutationGroup([[(1,2,3,4)],[(2,4)]]) sage: G.is_primitive() False
>>> from sage.all import * >>> G = PermutationGroup([[(Integer(1),Integer(2),Integer(3),Integer(4))],[(Integer(1),Integer(2))]]) >>> G.is_primitive() True >>> G = PermutationGroup([[(Integer(1),Integer(2),Integer(3),Integer(4))],[(Integer(2),Integer(4))]]) >>> G.is_primitive() False
You can specify a domain on which to test primitivity:
sage: G = PermutationGroup([[(1,2,3,4)],[(2,4)]]) sage: G.is_primitive([1..4]) False sage: G = PermutationGroup([[(3,4,5,6)],[(3,4)]]) #S_4 on [3..6] sage: G.is_primitive(G.non_fixed_points()) True
>>> from sage.all import * >>> G = PermutationGroup([[(Integer(1),Integer(2),Integer(3),Integer(4))],[(Integer(2),Integer(4))]]) >>> G.is_primitive((ellipsis_range(Integer(1),Ellipsis,Integer(4)))) False >>> G = PermutationGroup([[(Integer(3),Integer(4),Integer(5),Integer(6))],[(Integer(3),Integer(4))]]) #S_4 on [3..6] >>> G.is_primitive(G.non_fixed_points()) True
If \(G\) does not act on the domain, it always returns
False
:sage: G = PermutationGroup([[(1,2,3,4)],[(2,4)]]) sage: G.is_primitive([1,2,3]) False
>>> from sage.all import * >>> G = PermutationGroup([[(Integer(1),Integer(2),Integer(3),Integer(4))],[(Integer(2),Integer(4))]]) >>> G.is_primitive([Integer(1),Integer(2),Integer(3)]) False
- is_regular(domain=None)[source]#
Return
True
ifself
acts regularly ondomain
.A group \(G\) acts regularly on a set \(S\) if
\(G\) acts transitively on \(S\) and
\(G\) acts semi-regularly on \(S\).
EXAMPLES:
sage: G = PermutationGroup([[(1,2,3,4)]]) sage: G.is_regular() True sage: G = PermutationGroup([[(1,2,3,4)],[(5,6)]]) sage: G.is_regular() False
>>> from sage.all import * >>> G = PermutationGroup([[(Integer(1),Integer(2),Integer(3),Integer(4))]]) >>> G.is_regular() True >>> G = PermutationGroup([[(Integer(1),Integer(2),Integer(3),Integer(4))],[(Integer(5),Integer(6))]]) >>> G.is_regular() False
You can pass in a domain on which to test regularity:
sage: G = PermutationGroup([[(1,2,3,4)],[(5,6)]]) sage: G.is_regular([1..4]) True sage: G.is_regular(G.non_fixed_points()) False
>>> from sage.all import * >>> G = PermutationGroup([[(Integer(1),Integer(2),Integer(3),Integer(4))],[(Integer(5),Integer(6))]]) >>> G.is_regular((ellipsis_range(Integer(1),Ellipsis,Integer(4)))) True >>> G.is_regular(G.non_fixed_points()) False
- is_semi_regular(domain=None)[source]#
Return
True
ifself
acts semi-regularly ondomain
.A group \(G\) acts semi-regularly on a set \(S\) if the point stabilizers of \(S\) in \(G\) are trivial.
domain
is optional and may take several forms. See examples.EXAMPLES:
sage: G = PermutationGroup([[(1,2,3,4)]]) sage: G.is_semi_regular() True sage: G = PermutationGroup([[(1,2,3,4)],[(5,6)]]) sage: G.is_semi_regular() False
>>> from sage.all import * >>> G = PermutationGroup([[(Integer(1),Integer(2),Integer(3),Integer(4))]]) >>> G.is_semi_regular() True >>> G = PermutationGroup([[(Integer(1),Integer(2),Integer(3),Integer(4))],[(Integer(5),Integer(6))]]) >>> G.is_semi_regular() False
You can pass in a domain to test semi-regularity:
sage: G = PermutationGroup([[(1,2,3,4)],[(5,6)]]) sage: G.is_semi_regular([1..4]) True sage: G.is_semi_regular(G.non_fixed_points()) False
>>> from sage.all import * >>> G = PermutationGroup([[(Integer(1),Integer(2),Integer(3),Integer(4))],[(Integer(5),Integer(6))]]) >>> G.is_semi_regular((ellipsis_range(Integer(1),Ellipsis,Integer(4)))) True >>> G.is_semi_regular(G.non_fixed_points()) False
- is_simple()[source]#
Return
True
if the group is simple.A group is simple if it has no proper normal subgroups.
EXAMPLES:
sage: G = PermutationGroup(['(1,2,3)(4,5)']) sage: G.is_simple() False
>>> from sage.all import * >>> G = PermutationGroup(['(1,2,3)(4,5)']) >>> G.is_simple() False
- is_solvable()[source]#
Return
True
if the group is solvable.EXAMPLES:
sage: G = PermutationGroup(['(1,2,3)(4,5)']) sage: G.is_solvable() True
>>> from sage.all import * >>> G = PermutationGroup(['(1,2,3)(4,5)']) >>> G.is_solvable() True
- is_subgroup(other)[source]#
Return
True
ifself
is a subgroup ofother
.EXAMPLES:
sage: G = AlternatingGroup(5) sage: H = SymmetricGroup(5) sage: G.is_subgroup(H) True
>>> from sage.all import * >>> G = AlternatingGroup(Integer(5)) >>> H = SymmetricGroup(Integer(5)) >>> G.is_subgroup(H) True
- is_supersolvable()[source]#
Return
True
if the group is supersolvable.A finite group is supersolvable if it has a normal series with cyclic factors.
EXAMPLES:
sage: G = PermutationGroup(['(1,2,3)(4,5)']) sage: G.is_supersolvable() True
>>> from sage.all import * >>> G = PermutationGroup(['(1,2,3)(4,5)']) >>> G.is_supersolvable() True
- is_transitive(domain=None)[source]#
Return
True
ifself
acts transitively ondomain
.A group \(G\) acts transitively on set \(S\) if for all \(x,y\in S\) there is some \(g\in G\) such that \(x^g=y\).
EXAMPLES:
sage: G = SymmetricGroup(5) sage: G.is_transitive() True sage: G = PermutationGroup(['(1,2)(3,4)(5,6)']) sage: G.is_transitive() False
>>> from sage.all import * >>> G = SymmetricGroup(Integer(5)) >>> G.is_transitive() True >>> G = PermutationGroup(['(1,2)(3,4)(5,6)']) >>> G.is_transitive() False
sage: G = PermutationGroup([[(1,2,3,4,5)],[(1,2)],[(6,7)]]) sage: G.is_transitive([1,2,3,4,5]) True sage: G.is_transitive([1..7]) False sage: G.is_transitive(G.non_fixed_points()) False sage: H = PermutationGroup([[(1,2,3)],[(4,5,6)]]) sage: H.is_transitive(H.non_fixed_points()) False
>>> from sage.all import * >>> G = PermutationGroup([[(Integer(1),Integer(2),Integer(3),Integer(4),Integer(5))],[(Integer(1),Integer(2))],[(Integer(6),Integer(7))]]) >>> G.is_transitive([Integer(1),Integer(2),Integer(3),Integer(4),Integer(5)]) True >>> G.is_transitive((ellipsis_range(Integer(1),Ellipsis,Integer(7)))) False >>> G.is_transitive(G.non_fixed_points()) False >>> H = PermutationGroup([[(Integer(1),Integer(2),Integer(3))],[(Integer(4),Integer(5),Integer(6))]]) >>> H.is_transitive(H.non_fixed_points()) False
If \(G\) does not act on the domain, it always returns
False
:sage: G = PermutationGroup([[(1,2,3,4,5)],[(1,2)]]) #S_5 on [1..5] sage: G.is_transitive([1,4,5]) False
>>> from sage.all import * >>> G = PermutationGroup([[(Integer(1),Integer(2),Integer(3),Integer(4),Integer(5))],[(Integer(1),Integer(2))]]) #S_5 on [1..5] >>> G.is_transitive([Integer(1),Integer(4),Integer(5)]) False
Note that this differs from the definition in GAP, where
IsTransitive
returns whether the group is transitive on the set of points moved by the group.sage: G = PermutationGroup([(2,3)]) sage: G.is_transitive() False sage: gap(G).IsTransitive() true
>>> from sage.all import * >>> G = PermutationGroup([(Integer(2),Integer(3))]) >>> G.is_transitive() False >>> gap(G).IsTransitive() true
- is_trivial()[source]#
Return
True
if this group is the trivial group.A permutation group is trivial, if it consists only of the identity element, that is, if it has no generators or only trivial generators.
EXAMPLES:
sage: G = PermutationGroup([], domain=["a", "b", "c"]) sage: G.is_trivial() True sage: SymmetricGroup(0).is_trivial() True sage: SymmetricGroup(1).is_trivial() True sage: SymmetricGroup(2).is_trivial() False sage: DihedralGroup(1).is_trivial() False
>>> from sage.all import * >>> G = PermutationGroup([], domain=["a", "b", "c"]) >>> G.is_trivial() True >>> SymmetricGroup(Integer(0)).is_trivial() True >>> SymmetricGroup(Integer(1)).is_trivial() True >>> SymmetricGroup(Integer(2)).is_trivial() False >>> DihedralGroup(Integer(1)).is_trivial() False
- isomorphism_to(right)[source]#
Return an isomorphism from
self
toright
if the groups are isomorphic, otherwiseNone
.INPUT:
self
– this groupright
– a permutation group
OUTPUT:
None
, or a morphism of permutation groupsEXAMPLES:
sage: G = PermutationGroup(['(1,2,3)(4,5)', '(1,2,3,4,5)']) sage: H = PermutationGroup(['(1,2,3)(4,5)']) sage: G.isomorphism_to(H) is None True sage: G = PermutationGroup([(1,2,3), (2,3)]) sage: H = PermutationGroup([(1,2,4), (1,4)]) sage: G.isomorphism_to(H) # not tested, see below Permutation group morphism: From: Permutation Group with generators [(2,3), (1,2,3)] To: Permutation Group with generators [(1,2,4), (1,4)] Defn: [(2,3), (1,2,3)] -> [(2,4), (1,2,4)]
>>> from sage.all import * >>> G = PermutationGroup(['(1,2,3)(4,5)', '(1,2,3,4,5)']) >>> H = PermutationGroup(['(1,2,3)(4,5)']) >>> G.isomorphism_to(H) is None True >>> G = PermutationGroup([(Integer(1),Integer(2),Integer(3)), (Integer(2),Integer(3))]) >>> H = PermutationGroup([(Integer(1),Integer(2),Integer(4)), (Integer(1),Integer(4))]) >>> G.isomorphism_to(H) # not tested, see below Permutation group morphism: From: Permutation Group with generators [(2,3), (1,2,3)] To: Permutation Group with generators [(1,2,4), (1,4)] Defn: [(2,3), (1,2,3)] -> [(2,4), (1,2,4)]
- isomorphism_type_info_simple_group()[source]#
If the group is simple, then this returns the name of the group.
EXAMPLES:
sage: G = CyclicPermutationGroup(5) sage: G.isomorphism_type_info_simple_group() rec( name := "Z(5)", parameter := 5, series := "Z", shortname := "C5" )
>>> from sage.all import * >>> G = CyclicPermutationGroup(Integer(5)) >>> G.isomorphism_type_info_simple_group() rec( name := "Z(5)", parameter := 5, series := "Z", shortname := "C5" )
- iteration(algorithm='SGS')[source]#
Return an iterator over the elements of this group.
INPUT:
algorithm
– (default:"SGS"
) either"SGS"
– using strong generating system"BFS"
– a breadth first search on the Cayley graph with respect toself.gens()
"DFS"
– a depth first search on the Cayley graph with respect toself.gens()
Note
In general, the algorithm
"SGS"
is faster. Yet, for small groups,"BFS"
and"DFS"
might be faster.Note
The order in which the iterator visits the elements differs in the algorithms.
EXAMPLES:
sage: G = PermutationGroup([[(1,2)], [(2,3)]]) sage: list(G.iteration()) [(), (1,2,3), (1,3,2), (2,3), (1,2), (1,3)] sage: list(G.iteration(algorithm="BFS")) [(), (2,3), (1,2), (1,2,3), (1,3,2), (1,3)] sage: list(G.iteration(algorithm="DFS")) [(), (1,2), (1,3,2), (1,3), (1,2,3), (2,3)]
>>> from sage.all import * >>> G = PermutationGroup([[(Integer(1),Integer(2))], [(Integer(2),Integer(3))]]) >>> list(G.iteration()) [(), (1,2,3), (1,3,2), (2,3), (1,2), (1,3)] >>> list(G.iteration(algorithm="BFS")) [(), (2,3), (1,2), (1,2,3), (1,3,2), (1,3)] >>> list(G.iteration(algorithm="DFS")) [(), (1,2), (1,3,2), (1,3), (1,2,3), (2,3)]
- largest_moved_point()[source]#
Return the largest point moved by a permutation in this group.
EXAMPLES:
sage: G = PermutationGroup([[(1,2),(3,4)], [(1,2,3,4)]]) sage: G.largest_moved_point() 4 sage: G = PermutationGroup([[(1,2),(3,4)], [(1,2,3,4,10)]]) sage: G.largest_moved_point() 10
>>> from sage.all import * >>> G = PermutationGroup([[(Integer(1),Integer(2)),(Integer(3),Integer(4))], [(Integer(1),Integer(2),Integer(3),Integer(4))]]) >>> G.largest_moved_point() 4 >>> G = PermutationGroup([[(Integer(1),Integer(2)),(Integer(3),Integer(4))], [(Integer(1),Integer(2),Integer(3),Integer(4),Integer(10))]]) >>> G.largest_moved_point() 10
sage: G = PermutationGroup([[('a','b','c'),('d','e')]]) sage: G.largest_moved_point() 'e'
>>> from sage.all import * >>> G = PermutationGroup([[('a','b','c'),('d','e')]]) >>> G.largest_moved_point() 'e'
Warning
The name of this function is not good; this function should be deprecated in term of degree:
sage: P = PermutationGroup([[1,2,3,4]]) sage: P.largest_moved_point() 4 sage: P.cardinality() 1
>>> from sage.all import * >>> P = PermutationGroup([[Integer(1),Integer(2),Integer(3),Integer(4)]]) >>> P.largest_moved_point() 4 >>> P.cardinality() 1
- list()[source]#
Return list of all elements of this group.
EXAMPLES:
sage: G = PermutationGroup([[(1,2,3,4)], [(1,2)]]) sage: G.list() [(), (1,4)(2,3), (1,2)(3,4), (1,3)(2,4), (2,4,3), (1,4,2), (1,2,3), (1,3,4), (2,3,4), (1,4,3), (1,2,4), (1,3,2), (3,4), (1,4,2,3), (1,2), (1,3,2,4), (2,4), (1,4,3,2), (1,2,3,4), (1,3), (2,3), (1,4), (1,2,4,3), (1,3,4,2)] sage: G = PermutationGroup([[('a','b')]], domain=('a', 'b')); G Permutation Group with generators [('a','b')] sage: G.list() [(), ('a','b')]
>>> from sage.all import * >>> G = PermutationGroup([[(Integer(1),Integer(2),Integer(3),Integer(4))], [(Integer(1),Integer(2))]]) >>> G.list() [(), (1,4)(2,3), (1,2)(3,4), (1,3)(2,4), (2,4,3), (1,4,2), (1,2,3), (1,3,4), (2,3,4), (1,4,3), (1,2,4), (1,3,2), (3,4), (1,4,2,3), (1,2), (1,3,2,4), (2,4), (1,4,3,2), (1,2,3,4), (1,3), (2,3), (1,4), (1,2,4,3), (1,3,4,2)] >>> G = PermutationGroup([[('a','b')]], domain=('a', 'b')); G Permutation Group with generators [('a','b')] >>> G.list() [(), ('a','b')]
- lower_central_series()[source]#
Return the lower central series of this group as a list of permutation groups.
EXAMPLES:
These computations use pseudo-random numbers, so we set the seed for reproducible testing.
sage: set_random_seed(0) sage: G = PermutationGroup([[(1,2,3),(4,5)],[(3,4)]]) sage: G.lower_central_series() [Subgroup generated by [(3,4), (1,2,3)(4,5)] of (Permutation Group with generators [(3,4), (1,2,3)(4,5)]), Subgroup generated by [(1,5)(3,4), (1,5)(2,4), (1,3,5)] of (Permutation Group with generators [(3,4), (1,2,3)(4,5)])]
>>> from sage.all import * >>> set_random_seed(Integer(0)) >>> G = PermutationGroup([[(Integer(1),Integer(2),Integer(3)),(Integer(4),Integer(5))],[(Integer(3),Integer(4))]]) >>> G.lower_central_series() [Subgroup generated by [(3,4), (1,2,3)(4,5)] of (Permutation Group with generators [(3,4), (1,2,3)(4,5)]), Subgroup generated by [(1,5)(3,4), (1,5)(2,4), (1,3,5)] of (Permutation Group with generators [(3,4), (1,2,3)(4,5)])]
- maximal_normal_subgroups()[source]#
Return the maximal proper normal subgroups of
self
.This raises an error if \(G/[G, G]\) is infinite, yielding infinitely many maximal normal subgroups.
EXAMPLES:
sage: G = PermutationGroup([(1,2,3),(4,5)]) sage: G.maximal_normal_subgroups() [Subgroup generated by [(1,2,3)] of (Permutation Group with generators [(4,5), (1,2,3)]), Subgroup generated by [(4,5)] of (Permutation Group with generators [(4,5), (1,2,3)])]
>>> from sage.all import * >>> G = PermutationGroup([(Integer(1),Integer(2),Integer(3)),(Integer(4),Integer(5))]) >>> G.maximal_normal_subgroups() [Subgroup generated by [(1,2,3)] of (Permutation Group with generators [(4,5), (1,2,3)]), Subgroup generated by [(4,5)] of (Permutation Group with generators [(4,5), (1,2,3)])]
- minimal_generating_set()[source]#
Return a minimal generating set
EXAMPLES:
sage: # needs sage.graphs sage: g = graphs.CompleteGraph(4) sage: g.relabel(['a','b','c','d']) sage: mgs = g.automorphism_group().minimal_generating_set(); len(mgs) 2 sage: mgs # random [('b','d','c'), ('a','c','b','d')]
>>> from sage.all import * >>> # needs sage.graphs >>> g = graphs.CompleteGraph(Integer(4)) >>> g.relabel(['a','b','c','d']) >>> mgs = g.automorphism_group().minimal_generating_set(); len(mgs) 2 >>> mgs # random [('b','d','c'), ('a','c','b','d')]
- minimal_normal_subgroups()[source]#
Return the nontrivial minimal normal subgroups
self
.EXAMPLES:
sage: G = PermutationGroup([(1,2,3),(4,5)]) sage: G.minimal_normal_subgroups() [Subgroup generated by [(4,5)] of (Permutation Group with generators [(4,5), (1,2,3)]), Subgroup generated by [(1,2,3)] of (Permutation Group with generators [(4,5), (1,2,3)])]
>>> from sage.all import * >>> G = PermutationGroup([(Integer(1),Integer(2),Integer(3)),(Integer(4),Integer(5))]) >>> G.minimal_normal_subgroups() [Subgroup generated by [(4,5)] of (Permutation Group with generators [(4,5), (1,2,3)]), Subgroup generated by [(1,2,3)] of (Permutation Group with generators [(4,5), (1,2,3)])]
- molien_series()[source]#
Return the Molien series of a permutation group. The function
\[M(x) = (1/|G|)\sum_{g\in G} \det(1-x*g)^{-1}\]is sometimes called the “Molien series” of \(G\). GAP’s
MolienSeries
is associated to a character of a group \(G\). How are these related? A group \(G\), given as a permutation group on \(n\) points, has a “natural” representation of dimension \(n\), given by permutation matrices. The Molien series of \(G\) is the one associated to that permutation representation of \(G\) using the above formula. Character values then count fixed points of the corresponding permutations.EXAMPLES:
sage: G = SymmetricGroup(5) sage: G.molien_series() -1/(x^15 - x^14 - x^13 + x^10 + x^9 + x^8 - x^7 - x^6 - x^5 + x^2 + x - 1) sage: G = SymmetricGroup(3) sage: G.molien_series() -1/(x^6 - x^5 - x^4 + x^2 + x - 1)
>>> from sage.all import * >>> G = SymmetricGroup(Integer(5)) >>> G.molien_series() -1/(x^15 - x^14 - x^13 + x^10 + x^9 + x^8 - x^7 - x^6 - x^5 + x^2 + x - 1) >>> G = SymmetricGroup(Integer(3)) >>> G.molien_series() -1/(x^6 - x^5 - x^4 + x^2 + x - 1)
Some further tests (after Issue #15817):
sage: G = PermutationGroup([[(1,2,3,4)]]) sage: S4ms = SymmetricGroup(4).molien_series() sage: G.molien_series() / S4ms x^5 + 2*x^4 + x^3 + x^2 + 1
>>> from sage.all import * >>> G = PermutationGroup([[(Integer(1),Integer(2),Integer(3),Integer(4))]]) >>> S4ms = SymmetricGroup(Integer(4)).molien_series() >>> G.molien_series() / S4ms x^5 + 2*x^4 + x^3 + x^2 + 1
This works for not-transitive groups:
sage: G = PermutationGroup([[(1,2)],[(3,4)]]) sage: G.molien_series() / S4ms x^4 + x^3 + 2*x^2 + x + 1
>>> from sage.all import * >>> G = PermutationGroup([[(Integer(1),Integer(2))],[(Integer(3),Integer(4))]]) >>> G.molien_series() / S4ms x^4 + x^3 + 2*x^2 + x + 1
This works for groups with fixed points:
sage: G = PermutationGroup([[(2,)]]) sage: G.molien_series() 1/(x^2 - 2*x + 1)
>>> from sage.all import * >>> G = PermutationGroup([[(Integer(2),)]]) >>> G.molien_series() 1/(x^2 - 2*x + 1)
- ngens()[source]#
Return the number of generators of
self
.EXAMPLES:
sage: A4 = PermutationGroup([[(1,2,3)], [(2,3,4)]]); A4 Permutation Group with generators [(2,3,4), (1,2,3)] sage: A4.ngens() 2
>>> from sage.all import * >>> A4 = PermutationGroup([[(Integer(1),Integer(2),Integer(3))], [(Integer(2),Integer(3),Integer(4))]]); A4 Permutation Group with generators [(2,3,4), (1,2,3)] >>> A4.ngens() 2
- non_fixed_points()[source]#
Return the list of points not fixed by
self
, i.e., the subset ofself.domain()
moved by some element ofself
.EXAMPLES:
sage: G = PermutationGroup([[(3,4,5)],[(7,10)]]) sage: G.non_fixed_points() [3, 4, 5, 7, 10] sage: G = PermutationGroup([[(2,3,6)],[(9,)]]) # note: 9 is fixed sage: G.non_fixed_points() [2, 3, 6]
>>> from sage.all import * >>> G = PermutationGroup([[(Integer(3),Integer(4),Integer(5))],[(Integer(7),Integer(10))]]) >>> G.non_fixed_points() [3, 4, 5, 7, 10] >>> G = PermutationGroup([[(Integer(2),Integer(3),Integer(6))],[(Integer(9),)]]) # note: 9 is fixed >>> G.non_fixed_points() [2, 3, 6]
- normal_subgroups()[source]#
Return the normal subgroups of this group as a (sorted in increasing order) list of permutation groups.
The normal subgroups of \(H = PSL(2,7) \times PSL(2,7)\) are \(1\), two copies of \(PSL(2,7)\) and \(H\) itself, as the following example shows.
EXAMPLES:
sage: G = PSL(2,7) sage: D = G.direct_product(G) sage: H = D[0] sage: NH = H.normal_subgroups() sage: len(NH) 4 sage: NH[1].is_isomorphic(G) True sage: NH[2].is_isomorphic(G) True
>>> from sage.all import * >>> G = PSL(Integer(2),Integer(7)) >>> D = G.direct_product(G) >>> H = D[Integer(0)] >>> NH = H.normal_subgroups() >>> len(NH) 4 >>> NH[Integer(1)].is_isomorphic(G) True >>> NH[Integer(2)].is_isomorphic(G) True
- normalizer(g)[source]#
Return the normalizer of
g
inself
.EXAMPLES:
sage: G = PermutationGroup([[(1,2),(3,4)], [(1,2,3,4)]]) sage: g = G([(1,3)]) sage: G.normalizer(g) Subgroup generated by [(1,3), (2,4)] of (Permutation Group with generators [(1,2)(3,4), (1,2,3,4)]) sage: g = G([(1,2,3,4)]) sage: G.normalizer(g) Subgroup generated by [(1,2,3,4), (1,3)(2,4), (2,4)] of (Permutation Group with generators [(1,2)(3,4), (1,2,3,4)]) sage: H = G.subgroup([G([(1,2,3,4)])]) sage: G.normalizer(H) Subgroup generated by [(1,2,3,4), (1,3)(2,4), (2,4)] of (Permutation Group with generators [(1,2)(3,4), (1,2,3,4)])
>>> from sage.all import * >>> G = PermutationGroup([[(Integer(1),Integer(2)),(Integer(3),Integer(4))], [(Integer(1),Integer(2),Integer(3),Integer(4))]]) >>> g = G([(Integer(1),Integer(3))]) >>> G.normalizer(g) Subgroup generated by [(1,3), (2,4)] of (Permutation Group with generators [(1,2)(3,4), (1,2,3,4)]) >>> g = G([(Integer(1),Integer(2),Integer(3),Integer(4))]) >>> G.normalizer(g) Subgroup generated by [(1,2,3,4), (1,3)(2,4), (2,4)] of (Permutation Group with generators [(1,2)(3,4), (1,2,3,4)]) >>> H = G.subgroup([G([(Integer(1),Integer(2),Integer(3),Integer(4))])]) >>> G.normalizer(H) Subgroup generated by [(1,2,3,4), (1,3)(2,4), (2,4)] of (Permutation Group with generators [(1,2)(3,4), (1,2,3,4)])
- normalizes(other)[source]#
Return
True
if the groupother
is normalized byself
.Wraps GAP’s
IsNormal
function.A group \(G\) normalizes a group \(U\) if and only if for every \(g \in G\) and \(u \in U\) the element \(u^g\) is a member of \(U\). Note that \(U\) need not be a subgroup of \(G\).
EXAMPLES:
sage: G = PermutationGroup(['(1,2,3)(4,5)']) sage: H = PermutationGroup(['(1,2,3)(4,5)', '(1,2,3,4,5)']) sage: H.normalizes(G) False sage: G = SymmetricGroup(3) sage: H = PermutationGroup( [ (4,5,6) ] ) sage: G.normalizes(H) True sage: H.normalizes(G) True
>>> from sage.all import * >>> G = PermutationGroup(['(1,2,3)(4,5)']) >>> H = PermutationGroup(['(1,2,3)(4,5)', '(1,2,3,4,5)']) >>> H.normalizes(G) False >>> G = SymmetricGroup(Integer(3)) >>> H = PermutationGroup( [ (Integer(4),Integer(5),Integer(6)) ] ) >>> G.normalizes(H) True >>> H.normalizes(G) True
In the last example, \(G\) and \(H\) are disjoint, so each normalizes the other.
- one()[source]#
Return the identity element of this group.
EXAMPLES:
sage: G = PermutationGroup([[(1,2,3),(4,5)]]) sage: e = G.identity(); e # indirect doctest () sage: g = G.gen(0) sage: g*e (1,2,3)(4,5) sage: e*g (1,2,3)(4,5) sage: S = SymmetricGroup(['a','b','c']) sage: S.identity() ()
>>> from sage.all import * >>> G = PermutationGroup([[(Integer(1),Integer(2),Integer(3)),(Integer(4),Integer(5))]]) >>> e = G.identity(); e # indirect doctest () >>> g = G.gen(Integer(0)) >>> g*e (1,2,3)(4,5) >>> e*g (1,2,3)(4,5) >>> S = SymmetricGroup(['a','b','c']) >>> S.identity() ()
- orbit(point, action='OnPoints')[source]#
Return the orbit of a point under a group action.
INPUT:
point
– can be a point or any of the list above, depending on the action to be considered.action
– string. ifpoint
is an element from the domain, a tuple of elements of the domain, a tuple of tuples […], this variable describes how the group is acting.The actions currently available through this method are
"OnPoints"
,"OnTuples"
,"OnSets"
,"OnPairs"
,"OnSetsSets"
,"OnSetsDisjointSets"
,"OnSetsTuples"
,"OnTuplesSets"
,"OnTuplesTuples"
. They are taken from GAP’s list of group actions, seegap.help('Group Actions')
.It is set to
"OnPoints"
by default. See below for examples.
OUTPUT:
The orbit of
point
as a tuple. Each entry is an image under the action of the permutation group, if necessary converted to the corresponding container. That is, ifaction='OnSets'
then each entry will be a set even ifpoint
was given by a list/tuple/iterable.EXAMPLES:
sage: G = PermutationGroup([ [(3,4)], [(1,3)] ]) sage: G.orbit(3) (3, 4, 1) sage: G = PermutationGroup([[(1,2),(3,4)], [(1,2,3,4,10)]]) sage: G.orbit(3) (3, 4, 10, 1, 2) sage: G = PermutationGroup([ [('c','d')], [('a','c')] ]) sage: G.orbit('a') ('a', 'c', 'd')
>>> from sage.all import * >>> G = PermutationGroup([ [(Integer(3),Integer(4))], [(Integer(1),Integer(3))] ]) >>> G.orbit(Integer(3)) (3, 4, 1) >>> G = PermutationGroup([[(Integer(1),Integer(2)),(Integer(3),Integer(4))], [(Integer(1),Integer(2),Integer(3),Integer(4),Integer(10))]]) >>> G.orbit(Integer(3)) (3, 4, 10, 1, 2) >>> G = PermutationGroup([ [('c','d')], [('a','c')] ]) >>> G.orbit('a') ('a', 'c', 'd')
Action of \(S_3\) on sets:
sage: S3 = groups.permutation.Symmetric(3) sage: S3.orbit((1,2), action = "OnSets") ({1, 2}, {2, 3}, {1, 3})
>>> from sage.all import * >>> S3 = groups.permutation.Symmetric(Integer(3)) >>> S3.orbit((Integer(1),Integer(2)), action = "OnSets") ({1, 2}, {2, 3}, {1, 3})
On tuples:
sage: S3.orbit((1,2), action = "OnTuples") ((1, 2), (2, 3), (2, 1), (3, 1), (1, 3), (3, 2))
>>> from sage.all import * >>> S3.orbit((Integer(1),Integer(2)), action = "OnTuples") ((1, 2), (2, 3), (2, 1), (3, 1), (1, 3), (3, 2))
Action of \(S_4\) on sets of disjoint sets:
sage: S4 = groups.permutation.Symmetric(4) sage: O = S4.orbit(((1,2),(3,4)), action="OnSetsDisjointSets") sage: {1, 2} in O[0] and {3, 4} in O[0] True sage: {1, 4} in O[1] and {2, 3} in O[1] True sage: all(x[0].union(x[1]) == {1,2,3,4} for x in O) True
>>> from sage.all import * >>> S4 = groups.permutation.Symmetric(Integer(4)) >>> O = S4.orbit(((Integer(1),Integer(2)),(Integer(3),Integer(4))), action="OnSetsDisjointSets") >>> {Integer(1), Integer(2)} in O[Integer(0)] and {Integer(3), Integer(4)} in O[Integer(0)] True >>> {Integer(1), Integer(4)} in O[Integer(1)] and {Integer(2), Integer(3)} in O[Integer(1)] True >>> all(x[Integer(0)].union(x[Integer(1)]) == {Integer(1),Integer(2),Integer(3),Integer(4)} for x in O) True
Action of \(S_4\) (on a nonstandard domain) on tuples of sets:
sage: S4 = PermutationGroup([ [('c','d')], [('a','c')], [('a','b')] ]) sage: orb = S4.orbit((('a','c'),('b','d')), "OnTuplesSets") sage: expect = (({'a', 'c'}, {'b', 'd'}), ({'a', 'd'}, {'c', 'b'}), ....: ({'c', 'b'}, {'a', 'd'}), ({'b', 'd'}, {'a', 'c'}), ....: ({'c', 'd'}, {'a', 'b'}), ({'a', 'b'}, {'c', 'd'})) sage: expect == orb True
>>> from sage.all import * >>> S4 = PermutationGroup([ [('c','d')], [('a','c')], [('a','b')] ]) >>> orb = S4.orbit((('a','c'),('b','d')), "OnTuplesSets") >>> expect = (({'a', 'c'}, {'b', 'd'}), ({'a', 'd'}, {'c', 'b'}), ... ({'c', 'b'}, {'a', 'd'}), ({'b', 'd'}, {'a', 'c'}), ... ({'c', 'd'}, {'a', 'b'}), ({'a', 'b'}, {'c', 'd'})) >>> expect == orb True
Action of \(S_4\) (on a very nonstandard domain) on tuples of sets:
sage: S4 = PermutationGroup([ [((11,(12,13)),'d')], ....: [((12,(12,11)),(11,(12,13)))], [((12,(12,11)),'b')] ]) sage: orb = S4.orbit((( (11,(12,13)), (12,(12,11))),('b','d')), ....: "OnTuplesSets") sage: expect = (({(11, (12, 13)), (12, (12, 11))}, {'b', 'd'}), ....: ({'d', (12, (12, 11))}, {(11, (12, 13)), 'b'}), ....: ({(11, (12, 13)), 'b'}, {'d', (12, (12, 11))}), ....: ({(11, (12, 13)), 'd'}, {'b', (12, (12, 11))}), ....: ({'b', 'd'}, {(11, (12, 13)), (12, (12, 11))}), ....: ({'b', (12, (12, 11))}, {(11, (12, 13)), 'd'})) sage: all(x in orb for x in expect) and len(orb) == len(expect) True
>>> from sage.all import * >>> S4 = PermutationGroup([ [((Integer(11),(Integer(12),Integer(13))),'d')], ... [((Integer(12),(Integer(12),Integer(11))),(Integer(11),(Integer(12),Integer(13))))], [((Integer(12),(Integer(12),Integer(11))),'b')] ]) >>> orb = S4.orbit((( (Integer(11),(Integer(12),Integer(13))), (Integer(12),(Integer(12),Integer(11)))),('b','d')), ... "OnTuplesSets") >>> expect = (({(Integer(11), (Integer(12), Integer(13))), (Integer(12), (Integer(12), Integer(11)))}, {'b', 'd'}), ... ({'d', (Integer(12), (Integer(12), Integer(11)))}, {(Integer(11), (Integer(12), Integer(13))), 'b'}), ... ({(Integer(11), (Integer(12), Integer(13))), 'b'}, {'d', (Integer(12), (Integer(12), Integer(11)))}), ... ({(Integer(11), (Integer(12), Integer(13))), 'd'}, {'b', (Integer(12), (Integer(12), Integer(11)))}), ... ({'b', 'd'}, {(Integer(11), (Integer(12), Integer(13))), (Integer(12), (Integer(12), Integer(11)))}), ... ({'b', (Integer(12), (Integer(12), Integer(11)))}, {(Integer(11), (Integer(12), Integer(13))), 'd'})) >>> all(x in orb for x in expect) and len(orb) == len(expect) True
- orbits()[source]#
Return the orbits of the elements of the domain under the default group action.
EXAMPLES:
sage: G = PermutationGroup([ [(3,4)], [(1,3)] ]) sage: G.orbits() ((1, 3, 4), (2,)) sage: G = PermutationGroup([[(1,2),(3,4)], [(1,2,3,4,10)]]) sage: G.orbits() ((1, 2, 3, 4, 10), (5,), (6,), (7,), (8,), (9,)) sage: G = PermutationGroup([ [('c','d')], [('a','c')],[('b',)]]) sage: G.orbits() (('a', 'c', 'd'), ('b',))
>>> from sage.all import * >>> G = PermutationGroup([ [(Integer(3),Integer(4))], [(Integer(1),Integer(3))] ]) >>> G.orbits() ((1, 3, 4), (2,)) >>> G = PermutationGroup([[(Integer(1),Integer(2)),(Integer(3),Integer(4))], [(Integer(1),Integer(2),Integer(3),Integer(4),Integer(10))]]) >>> G.orbits() ((1, 2, 3, 4, 10), (5,), (6,), (7,), (8,), (9,)) >>> G = PermutationGroup([ [('c','d')], [('a','c')],[('b',)]]) >>> G.orbits() (('a', 'c', 'd'), ('b',))
The answer is cached:
sage: G.orbits() is G.orbits() True
>>> from sage.all import * >>> G.orbits() is G.orbits() True
AUTHORS:
Nathan Dunfield
- order()[source]#
Return the number of elements of this group.
See also:
degree()
.EXAMPLES:
sage: G = PermutationGroup([[(1,2,3),(4,5)], [(1,2)]]) sage: G.order() 12 sage: G = PermutationGroup([()]) sage: G.order() 1 sage: G = PermutationGroup([]) sage: G.order() 1
>>> from sage.all import * >>> G = PermutationGroup([[(Integer(1),Integer(2),Integer(3)),(Integer(4),Integer(5))], [(Integer(1),Integer(2))]]) >>> G.order() 12 >>> G = PermutationGroup([()]) >>> G.order() 1 >>> G = PermutationGroup([]) >>> G.order() 1
cardinality()
is just an alias:sage: PermutationGroup([(1,2,3)]).cardinality() 3
>>> from sage.all import * >>> PermutationGroup([(Integer(1),Integer(2),Integer(3))]).cardinality() 3
- poincare_series(p=2, n=10)[source]#
Return the Poincaré series of \(G \mod p\) (\(p \geq 2\) must be a prime), for \(n\) large.
In other words, if you input a finite group \(G\), a prime \(p\), and a positive integer \(n\), it returns a quotient of polynomials \(f(x) = P(x) / Q(x)\) whose coefficient of \(x^k\) equals the rank of the vector space \(H_k(G, \ZZ / p \ZZ)\), for all \(k\) in the range \(1 \leq k \leq n\).
REQUIRES: GAP package HAP (in gap_packages-*.spkg).
EXAMPLES:
sage: G = SymmetricGroup(5) sage: G.poincare_series(2, 10) # optional - gap_package_hap (x^2 + 1)/(x^4 - x^3 - x + 1) sage: G = SymmetricGroup(3) sage: G.poincare_series(2, 10) # optional - gap_package_hap -1/(x - 1)
>>> from sage.all import * >>> G = SymmetricGroup(Integer(5)) >>> G.poincare_series(Integer(2), Integer(10)) # optional - gap_package_hap (x^2 + 1)/(x^4 - x^3 - x + 1) >>> G = SymmetricGroup(Integer(3)) >>> G.poincare_series(Integer(2), Integer(10)) # optional - gap_package_hap -1/(x - 1)
AUTHORS:
David Joyner and Graham Ellis
- quotient(N, **kwds)[source]#
Return the quotient of this permutation group by the normal subgroup \(N\), as a permutation group.
Further named arguments are passed to the permutation group constructor.
Wraps the GAP operator “/”.
EXAMPLES:
sage: G = PermutationGroup([(1,2,3), (2,3)]) sage: N = PermutationGroup([(1,2,3)]) sage: G.quotient(N) Permutation Group with generators [(1,2)] sage: G.quotient(G) Permutation Group with generators [(), ()]
>>> from sage.all import * >>> G = PermutationGroup([(Integer(1),Integer(2),Integer(3)), (Integer(2),Integer(3))]) >>> N = PermutationGroup([(Integer(1),Integer(2),Integer(3))]) >>> G.quotient(N) Permutation Group with generators [(1,2)] >>> G.quotient(G) Permutation Group with generators [(), ()]
- random_element()[source]#
Return a random element of this group.
EXAMPLES:
sage: G = PermutationGroup([[(1,2,3),(4,5)], [(1,2)]]) sage: a = G.random_element() sage: a in G True sage: a.parent() is G True sage: a^6 ()
>>> from sage.all import * >>> G = PermutationGroup([[(Integer(1),Integer(2),Integer(3)),(Integer(4),Integer(5))], [(Integer(1),Integer(2))]]) >>> a = G.random_element() >>> a in G True >>> a.parent() is G True >>> a**Integer(6) ()
- representative_action(x, y)[source]#
Return an element of
self
that maps \(x\) to \(y\) if it exists.This method wraps the gap function
RepresentativeAction
, which can also return elements that map a given set of points on another set of points.INPUT:
x
,y
– two elements of the domain.
EXAMPLES:
sage: G = groups.permutation.Cyclic(14) sage: g = G.representative_action(1, 10) sage: all(g(x) == 1 + ((x+9-1)%14) for x in G.domain()) True
>>> from sage.all import * >>> G = groups.permutation.Cyclic(Integer(14)) >>> g = G.representative_action(Integer(1), Integer(10)) >>> all(g(x) == Integer(1) + ((x+Integer(9)-Integer(1))%Integer(14)) for x in G.domain()) True
- semidirect_product(N, mapping, check=True)[source]#
The semidirect product of
self
withN
.INPUT:
N
– A group which is acted on byself
and naturally embeds as a normal subgroup of the returned semidirect product.mapping
– A pair of lists that together define a homomorphism, \(\phi :\)self
\(\rightarrow\) Aut(N
), by giving, in the second list, the images of the generators ofself
in the order given in the first list.check
– A boolean that, if set toFalse
, will skip the initial tests which are made onmapping
. This may be beneficial for largeN
, since in such cases the injectivity test can be expensive. Set toTrue
by default.
OUTPUT:
The semidirect product of
self
andN
defined by the action ofself
onN
given inmapping
(note that a homomorphism from \(A\) to the automorphism group of \(B\) is equivalent to an action of \(A\) on \(B\)’s underlying set). The semidirect product of two groups, \(H\) and \(N\), is a construct similar to the direct product in so far as the elements are the Cartesian product of the elements of \(H\) and the elements of \(N\). The operation, however, is built upon an action of \(H\) on \(N\), and is defined as such:\[(h_1,n_1)(h_2,n_2) = (h_{1}h_{2}, n_{1}^{h_2}n_2)\]This function is a wrapper for GAP’s
SemidirectProduct
command. The permutation group returned is built upon a permutation representation of the semidirect product ofself
andN
on a set of size \(\mid N \mid\). The generators ofN
are given as their right regular representations, while the generators ofself
are defined by the underlying action ofself
onN
. It should be noted that the defining action is not always faithful, and in this case the inputted representations of the generators ofself
are placed on additional letters and adjoined to the output’s generators ofself
.EXAMPLES:
Perhaps the most common example of a semidirect product comes from the family of dihedral groups. Each dihedral group is the semidirect product of \(C_2\) with \(C_n\), where, by convention, \(3 \leq n\). In this case, the nontrivial element of \(C_2\) acts on \(C_n\) so as to send each element to its inverse.
sage: C2 = CyclicPermutationGroup(2) sage: C8 = CyclicPermutationGroup(8) sage: alpha = PermutationGroupMorphism_im_gens(C8,C8,[(1,8,7,6,5,4,3,2)]) sage: S = C2.semidirect_product(C8,[[(1,2)],[alpha]]) sage: S == DihedralGroup(8) False sage: S.is_isomorphic(DihedralGroup(8)) True sage: S.gens() ((3,4,5,6,7,8,9,10), (1,2)(4,10)(5,9)(6,8))
>>> from sage.all import * >>> C2 = CyclicPermutationGroup(Integer(2)) >>> C8 = CyclicPermutationGroup(Integer(8)) >>> alpha = PermutationGroupMorphism_im_gens(C8,C8,[(Integer(1),Integer(8),Integer(7),Integer(6),Integer(5),Integer(4),Integer(3),Integer(2))]) >>> S = C2.semidirect_product(C8,[[(Integer(1),Integer(2))],[alpha]]) >>> S == DihedralGroup(Integer(8)) False >>> S.is_isomorphic(DihedralGroup(Integer(8))) True >>> S.gens() ((3,4,5,6,7,8,9,10), (1,2)(4,10)(5,9)(6,8))
A more complicated example can be drawn from [TW1980]. It is there given that a semidirect product of \(D_4\) and \(C_3\) is isomorphic to one of \(C_2\) and the dicyclic group of order 12. This nonabelian group of order 24 has very similar structure to the dicyclic and dihedral groups of order 24, the three being the only groups of order 24 with a two-element center and 9 conjugacy classes.
sage: D4 = DihedralGroup(4) sage: C3 = CyclicPermutationGroup(3) sage: alpha1 = PermutationGroupMorphism_im_gens(C3,C3,[(1,3,2)]) sage: alpha2 = PermutationGroupMorphism_im_gens(C3,C3,[(1,2,3)]) sage: S1 = D4.semidirect_product(C3,[[(1,2,3,4),(1,3)],[alpha1,alpha2]]) sage: C2 = CyclicPermutationGroup(2) sage: Q = DiCyclicGroup(3) sage: a = Q.gens()[0]; b=Q.gens()[1].inverse() sage: alpha = PermutationGroupMorphism_im_gens(Q,Q,[a,b]) sage: S2 = C2.semidirect_product(Q,[[(1,2)],[alpha]]) sage: S1.is_isomorphic(S2) True sage: S1.is_isomorphic(DihedralGroup(12)) False sage: S1.is_isomorphic(DiCyclicGroup(6)) False sage: S1.center() Subgroup generated by [(1,3)(2,4)] of (Permutation Group with generators [(5,6,7), (1,2,3,4)(6,7), (1,3)]) sage: len(S1.conjugacy_classes_representatives()) 9
>>> from sage.all import * >>> D4 = DihedralGroup(Integer(4)) >>> C3 = CyclicPermutationGroup(Integer(3)) >>> alpha1 = PermutationGroupMorphism_im_gens(C3,C3,[(Integer(1),Integer(3),Integer(2))]) >>> alpha2 = PermutationGroupMorphism_im_gens(C3,C3,[(Integer(1),Integer(2),Integer(3))]) >>> S1 = D4.semidirect_product(C3,[[(Integer(1),Integer(2),Integer(3),Integer(4)),(Integer(1),Integer(3))],[alpha1,alpha2]]) >>> C2 = CyclicPermutationGroup(Integer(2)) >>> Q = DiCyclicGroup(Integer(3)) >>> a = Q.gens()[Integer(0)]; b=Q.gens()[Integer(1)].inverse() >>> alpha = PermutationGroupMorphism_im_gens(Q,Q,[a,b]) >>> S2 = C2.semidirect_product(Q,[[(Integer(1),Integer(2))],[alpha]]) >>> S1.is_isomorphic(S2) True >>> S1.is_isomorphic(DihedralGroup(Integer(12))) False >>> S1.is_isomorphic(DiCyclicGroup(Integer(6))) False >>> S1.center() Subgroup generated by [(1,3)(2,4)] of (Permutation Group with generators [(5,6,7), (1,2,3,4)(6,7), (1,3)]) >>> len(S1.conjugacy_classes_representatives()) 9
If your normal subgroup is large, and you are confident that your inputs will successfully create a semidirect product, then it is beneficial, for the sake of time efficiency, to set the
check
parameter toFalse
.sage: C2 = CyclicPermutationGroup(2) sage: C2000 = CyclicPermutationGroup(500) sage: alpha = PermutationGroupMorphism(C2000,C2000,[C2000.gen().inverse()]) sage: S = C2.semidirect_product(C2000,[[(1,2)],[alpha]],check=False)
>>> from sage.all import * >>> C2 = CyclicPermutationGroup(Integer(2)) >>> C2000 = CyclicPermutationGroup(Integer(500)) >>> alpha = PermutationGroupMorphism(C2000,C2000,[C2000.gen().inverse()]) >>> S = C2.semidirect_product(C2000,[[(Integer(1),Integer(2))],[alpha]],check=False)
AUTHOR:
Kevin Halasz (2012-8-12)
- sign_representation(base_ring=None)[source]#
Return the sign representation of
self
overbase_ring
.INPUT:
base_ring
– (optional) the base ring; the default is \(\ZZ\)
EXAMPLES:
sage: G = groups.permutation.Dihedral(4) sage: G.sign_representation() Sign representation of Dihedral group of order 8 as a permutation group over Integer Ring
>>> from sage.all import * >>> G = groups.permutation.Dihedral(Integer(4)) >>> G.sign_representation() Sign representation of Dihedral group of order 8 as a permutation group over Integer Ring
- smallest_moved_point()[source]#
Return the smallest point moved by a permutation in this group.
EXAMPLES:
sage: G = PermutationGroup([[(3,4)], [(2,3,4)]]) sage: G.smallest_moved_point() 2 sage: G = PermutationGroup([[(1,2),(3,4)], [(1,2,3,4,10)]]) sage: G.smallest_moved_point() 1
>>> from sage.all import * >>> G = PermutationGroup([[(Integer(3),Integer(4))], [(Integer(2),Integer(3),Integer(4))]]) >>> G.smallest_moved_point() 2 >>> G = PermutationGroup([[(Integer(1),Integer(2)),(Integer(3),Integer(4))], [(Integer(1),Integer(2),Integer(3),Integer(4),Integer(10))]]) >>> G.smallest_moved_point() 1
Note that this function uses the ordering from the domain:
sage: S = SymmetricGroup(['a','b','c']) sage: S.smallest_moved_point() 'a'
>>> from sage.all import * >>> S = SymmetricGroup(['a','b','c']) >>> S.smallest_moved_point() 'a'
- socle()[source]#
Return the socle of
self
.The socle of a group \(G\) is the subgroup generated by all minimal normal subgroups.
EXAMPLES:
sage: G = SymmetricGroup(4) sage: s = G.socle(); s Subgroup generated by [(1,2)(3,4), (1,4)(2,3)] of (Symmetric group of order 4! as a permutation group)
>>> from sage.all import * >>> G = SymmetricGroup(Integer(4)) >>> s = G.socle(); s Subgroup generated by [(1,2)(3,4), (1,4)(2,3)] of (Symmetric group of order 4! as a permutation group)
The socle of the socle is, essentially, the socle:
sage: s.socle() == s.subgroup(s.gens()) True
>>> from sage.all import * >>> s.socle() == s.subgroup(s.gens()) True
- solvable_radical()[source]#
Return the solvable radical of
self
.The solvable radical (or just radical) of a group \(G\) is the largest solvable normal subgroup of \(G\).
EXAMPLES:
sage: G = SymmetricGroup(4) sage: G.solvable_radical() Subgroup generated by [(1,2,3,4), (1,2)] of (Symmetric group of order 4! as a permutation group) sage: G = SymmetricGroup(5) sage: G.solvable_radical() Subgroup generated by [()] of (Symmetric group of order 5! as a permutation group)
>>> from sage.all import * >>> G = SymmetricGroup(Integer(4)) >>> G.solvable_radical() Subgroup generated by [(1,2,3,4), (1,2)] of (Symmetric group of order 4! as a permutation group) >>> G = SymmetricGroup(Integer(5)) >>> G.solvable_radical() Subgroup generated by [()] of (Symmetric group of order 5! as a permutation group)
- stabilizer(point, action='OnPoints')[source]#
Return the subgroup of
self
which stabilize the given position.self
and its stabilizers must have same degree.INPUT:
point
– a point of thedomain()
, or a set of points depending on the value ofaction
.action
– (string; default"OnPoints"
) should the group be considered to act on points (action="OnPoints"
) or on sets of points (action="OnSets"
)? In the latter case, the first argument must be a subset ofdomain()
.
EXAMPLES:
sage: G = PermutationGroup([ [(3,4)], [(1,3)] ]) sage: G.stabilizer(1) Subgroup generated by [(3,4)] of (Permutation Group with generators [(3,4), (1,3)]) sage: G.stabilizer(3) Subgroup generated by [(1,4)] of (Permutation Group with generators [(3,4), (1,3)])
>>> from sage.all import * >>> G = PermutationGroup([ [(Integer(3),Integer(4))], [(Integer(1),Integer(3))] ]) >>> G.stabilizer(Integer(1)) Subgroup generated by [(3,4)] of (Permutation Group with generators [(3,4), (1,3)]) >>> G.stabilizer(Integer(3)) Subgroup generated by [(1,4)] of (Permutation Group with generators [(3,4), (1,3)])
The stabilizer of a set of points:
sage: s10 = groups.permutation.Symmetric(10) sage: s10.stabilizer([1..3],"OnSets").cardinality() 30240 sage: factorial(3)*factorial(7) 30240
>>> from sage.all import * >>> s10 = groups.permutation.Symmetric(Integer(10)) >>> s10.stabilizer((ellipsis_range(Integer(1),Ellipsis,Integer(3))),"OnSets").cardinality() 30240 >>> factorial(Integer(3))*factorial(Integer(7)) 30240
sage: G = PermutationGroup([[(1,2),(3,4)], [(1,2,3,4,10)]]) sage: G.stabilizer(10) Subgroup generated by [(1,2)(3,4), (2,3,4)] of (Permutation Group with generators [(1,2)(3,4), (1,2,3,4,10)]) sage: G.stabilizer(1) == G.subgroup(['(2,3)(4,10)', '(2,10,3)']) True sage: G = PermutationGroup([[(2,3,4)],[(6,7)]]) sage: G.stabilizer(1) Subgroup generated by [(6,7), (2,3,4)] of (Permutation Group with generators [(6,7), (2,3,4)]) sage: G.stabilizer(2) Subgroup generated by [(6,7)] of (Permutation Group with generators [(6,7), (2,3,4)]) sage: G.stabilizer(3) Subgroup generated by [(6,7)] of (Permutation Group with generators [(6,7), (2,3,4)]) sage: G.stabilizer(4) Subgroup generated by [(6,7)] of (Permutation Group with generators [(6,7), (2,3,4)]) sage: G.stabilizer(5) Subgroup generated by [(6,7), (2,3,4)] of (Permutation Group with generators [(6,7), (2,3,4)]) sage: G.stabilizer(6) Subgroup generated by [(2,3,4)] of (Permutation Group with generators [(6,7), (2,3,4)]) sage: G.stabilizer(7) Subgroup generated by [(2,3,4)] of (Permutation Group with generators [(6,7), (2,3,4)]) sage: G.stabilizer(8) Traceback (most recent call last): ... ValueError: 8 does not belong to the domain
>>> from sage.all import * >>> G = PermutationGroup([[(Integer(1),Integer(2)),(Integer(3),Integer(4))], [(Integer(1),Integer(2),Integer(3),Integer(4),Integer(10))]]) >>> G.stabilizer(Integer(10)) Subgroup generated by [(1,2)(3,4), (2,3,4)] of (Permutation Group with generators [(1,2)(3,4), (1,2,3,4,10)]) >>> G.stabilizer(Integer(1)) == G.subgroup(['(2,3)(4,10)', '(2,10,3)']) True >>> G = PermutationGroup([[(Integer(2),Integer(3),Integer(4))],[(Integer(6),Integer(7))]]) >>> G.stabilizer(Integer(1)) Subgroup generated by [(6,7), (2,3,4)] of (Permutation Group with generators [(6,7), (2,3,4)]) >>> G.stabilizer(Integer(2)) Subgroup generated by [(6,7)] of (Permutation Group with generators [(6,7), (2,3,4)]) >>> G.stabilizer(Integer(3)) Subgroup generated by [(6,7)] of (Permutation Group with generators [(6,7), (2,3,4)]) >>> G.stabilizer(Integer(4)) Subgroup generated by [(6,7)] of (Permutation Group with generators [(6,7), (2,3,4)]) >>> G.stabilizer(Integer(5)) Subgroup generated by [(6,7), (2,3,4)] of (Permutation Group with generators [(6,7), (2,3,4)]) >>> G.stabilizer(Integer(6)) Subgroup generated by [(2,3,4)] of (Permutation Group with generators [(6,7), (2,3,4)]) >>> G.stabilizer(Integer(7)) Subgroup generated by [(2,3,4)] of (Permutation Group with generators [(6,7), (2,3,4)]) >>> G.stabilizer(Integer(8)) Traceback (most recent call last): ... ValueError: 8 does not belong to the domain
sage: G = PermutationGroup([ [('c','d')], [('a','c')] ], domain='abcd') sage: G.stabilizer('a') Subgroup generated by [('c','d')] of (Permutation Group with generators [('c','d'), ('a','c')]) sage: G.stabilizer('b') Subgroup generated by [('c','d'), ('a','c')] of (Permutation Group with generators [('c','d'), ('a','c')]) sage: G.stabilizer('c') Subgroup generated by [('a','d')] of (Permutation Group with generators [('c','d'), ('a','c')]) sage: G.stabilizer('d') Subgroup generated by [('a','c')] of (Permutation Group with generators [('c','d'), ('a','c')])
>>> from sage.all import * >>> G = PermutationGroup([ [('c','d')], [('a','c')] ], domain='abcd') >>> G.stabilizer('a') Subgroup generated by [('c','d')] of (Permutation Group with generators [('c','d'), ('a','c')]) >>> G.stabilizer('b') Subgroup generated by [('c','d'), ('a','c')] of (Permutation Group with generators [('c','d'), ('a','c')]) >>> G.stabilizer('c') Subgroup generated by [('a','d')] of (Permutation Group with generators [('c','d'), ('a','c')]) >>> G.stabilizer('d') Subgroup generated by [('a','c')] of (Permutation Group with generators [('c','d'), ('a','c')])
- strong_generating_system(base_of_group=None, implementation='sage')[source]#
Return a Strong Generating System of
self
according the given base for the right action ofself
on itself.base_of_group
is a list of the positions on whichself
acts, in any order. The algorithm returns a list of transversals and each transversal is a list of permutations. By default,base_of_group
is[1, 2, 3, ..., d]
where \(d\) is the degree of the group.For
base_of_group
= \([ \mathrm{pos}_1, \mathrm{pos}_2, \dots , \mathrm{pos}_d]\) let \(G_i\) be the subgroup of \(G\) =self
which stabilizes \(\mathrm{pos}_1, \mathrm{pos}_2, \dots , \mathrm{pos}_i\), so\[G = G_0 \supset G_1 \supset G_2 \supset \dots \supset G_n = \{e\}\]Then the algorithm returns \([ G_i.\mathrm{transversals}(\mathrm{pos}_{i+1})]_{1 \leq i \leq n}\)
INPUT:
base_of_group
– (default:[1, 2, 3, ..., d]
) a list containing the integers \(1, 2, \ldots , d\) in any order, where \(d\) is the degree ofself
implementation
– (default:"sage"
) either"sage"
– use the direct implementation in Sage"gap"
– if used, thebase_of_group
must beNone
and the computation is directly performed in GAP
OUTPUT: a list of lists of permutations from the group, which forms a strong generating system
Warning
The outputs for implementations
"sage"
and"gap"
differ: First, the output is reversed, and second, it might be that"sage"
does not contain the trivial subgroup while"gap"
does.Also, both algorithms might yield different results based on the order in which
base_of_group
is given in the first situation.EXAMPLES:
sage: G = PermutationGroup([[(7,8)],[(3,4)],[(4,5)]]) sage: G.strong_generating_system() [[()], [()], [(), (3,4), (3,5,4)], [(), (4,5)], [()], [()], [(), (7,8)], [()]] sage: G = PermutationGroup([[(1,2,3,4)],[(1,2)]]) sage: G.strong_generating_system() [[(), (1,2)(3,4), (1,3)(2,4), (1,4)(2,3)], [(), (2,4,3), (2,3,4)], [(), (3,4)], [()]] sage: G = PermutationGroup([[(1,2,3)],[(4,5,7)],[(1,4,6)]]) sage: G.strong_generating_system() [[(), (1,2,3), (1,4,6), (1,3,2), (1,5,7,4,6), (1,6,4), (1,7,5,4,6)], [(), (2,3,6), (2,6,3), (2,7,5,6,3), (2,5,6,3)(4,7), (2,4,5,6,3)], [(), (3,5,6), (3,4,7,5,6), (3,6)(5,7), (3,7,4,5,6)], [(), (4,7,5), (4,5,7), (4,6,7)], [(), (5,6,7), (5,7,6)], [()], [()]] sage: G = PermutationGroup([[(1,2,3)],[(2,3,4)],[(3,4,5)]]) sage: G.strong_generating_system([5,4,3,2,1]) [[(), (1,5,3,4,2), (1,5,4,3,2), (1,5)(2,3), (1,5,2)], [(1,4)(2,3), (1,4,3), (1,4,2), ()], [(1,2,3), (1,3,2), ()], [()], [()]] sage: G = PermutationGroup([[(3,4)]]) sage: G.strong_generating_system() [[()], [()], [(), (3,4)], [()]] sage: G.strong_generating_system(base_of_group=[3,1,2,4]) [[(), (3,4)], [()], [()], [()]] sage: G = TransitiveGroup(12,17) sage: G.strong_generating_system() [[(), (1,4,11,2)(3,6,5,8)(7,10,9,12), (1,8,3,2)(4,11,10,9)(5,12,7,6), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12), (1,12,7,2)(3,10,9,8)(4,11,6,5), (1,11)(2,8)(3,5)(4,10)(6,12)(7,9), (1,10,11,8)(2,3,12,5)(4,9,6,7), (1,3)(2,8)(4,10)(5,7)(6,12)(9,11), (1,2,3,8)(4,9,10,11)(5,6,7,12), (1,6,7,8)(2,3,4,9)(5,10,11,12), (1,5,9)(3,11,7), (1,9,5)(3,7,11)], [(), (2,6,10)(4,12,8), (2,10,6)(4,8,12)], [()], [()], [()], [()], [()], [()], [()], [()], [()], [()]] sage: A = PermutationGroup([(1,2),(1,2,3,4,5,6,7,8,9)]) sage: X = A.strong_generating_system() sage: Y = A.strong_generating_system(implementation="gap") sage: [len(x) for x in X] [9, 8, 7, 6, 5, 4, 3, 2, 1] sage: [len(y) for y in Y] [1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> from sage.all import * >>> G = PermutationGroup([[(Integer(7),Integer(8))],[(Integer(3),Integer(4))],[(Integer(4),Integer(5))]]) >>> G.strong_generating_system() [[()], [()], [(), (3,4), (3,5,4)], [(), (4,5)], [()], [()], [(), (7,8)], [()]] >>> G = PermutationGroup([[(Integer(1),Integer(2),Integer(3),Integer(4))],[(Integer(1),Integer(2))]]) >>> G.strong_generating_system() [[(), (1,2)(3,4), (1,3)(2,4), (1,4)(2,3)], [(), (2,4,3), (2,3,4)], [(), (3,4)], [()]] >>> G = PermutationGroup([[(Integer(1),Integer(2),Integer(3))],[(Integer(4),Integer(5),Integer(7))],[(Integer(1),Integer(4),Integer(6))]]) >>> G.strong_generating_system() [[(), (1,2,3), (1,4,6), (1,3,2), (1,5,7,4,6), (1,6,4), (1,7,5,4,6)], [(), (2,3,6), (2,6,3), (2,7,5,6,3), (2,5,6,3)(4,7), (2,4,5,6,3)], [(), (3,5,6), (3,4,7,5,6), (3,6)(5,7), (3,7,4,5,6)], [(), (4,7,5), (4,5,7), (4,6,7)], [(), (5,6,7), (5,7,6)], [()], [()]] >>> G = PermutationGroup([[(Integer(1),Integer(2),Integer(3))],[(Integer(2),Integer(3),Integer(4))],[(Integer(3),Integer(4),Integer(5))]]) >>> G.strong_generating_system([Integer(5),Integer(4),Integer(3),Integer(2),Integer(1)]) [[(), (1,5,3,4,2), (1,5,4,3,2), (1,5)(2,3), (1,5,2)], [(1,4)(2,3), (1,4,3), (1,4,2), ()], [(1,2,3), (1,3,2), ()], [()], [()]] >>> G = PermutationGroup([[(Integer(3),Integer(4))]]) >>> G.strong_generating_system() [[()], [()], [(), (3,4)], [()]] >>> G.strong_generating_system(base_of_group=[Integer(3),Integer(1),Integer(2),Integer(4)]) [[(), (3,4)], [()], [()], [()]] >>> G = TransitiveGroup(Integer(12),Integer(17)) >>> G.strong_generating_system() [[(), (1,4,11,2)(3,6,5,8)(7,10,9,12), (1,8,3,2)(4,11,10,9)(5,12,7,6), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12), (1,12,7,2)(3,10,9,8)(4,11,6,5), (1,11)(2,8)(3,5)(4,10)(6,12)(7,9), (1,10,11,8)(2,3,12,5)(4,9,6,7), (1,3)(2,8)(4,10)(5,7)(6,12)(9,11), (1,2,3,8)(4,9,10,11)(5,6,7,12), (1,6,7,8)(2,3,4,9)(5,10,11,12), (1,5,9)(3,11,7), (1,9,5)(3,7,11)], [(), (2,6,10)(4,12,8), (2,10,6)(4,8,12)], [()], [()], [()], [()], [()], [()], [()], [()], [()], [()]] >>> A = PermutationGroup([(Integer(1),Integer(2)),(Integer(1),Integer(2),Integer(3),Integer(4),Integer(5),Integer(6),Integer(7),Integer(8),Integer(9))]) >>> X = A.strong_generating_system() >>> Y = A.strong_generating_system(implementation="gap") >>> [len(x) for x in X] [9, 8, 7, 6, 5, 4, 3, 2, 1] >>> [len(y) for y in Y] [1, 2, 3, 4, 5, 6, 7, 8, 9]
- structure_description(G, latex=False)[source]#
Return a string that tries to describe the structure of
G
.This methods wraps GAP’s
StructureDescription
method.For full details, including the form of the returned string and the algorithm to build it, see GAP’s documentation.
INPUT:
latex
– a boolean (default:False
); ifTrue
, return a LaTeX formatted string
OUTPUT: string
Warning
From GAP’s documentation: The string returned by
StructureDescription
is not an isomorphism invariant: non-isomorphic groups can have the same string value, and two isomorphic groups in different representations can produce different strings.EXAMPLES:
sage: # needs sage.groups sage: G = CyclicPermutationGroup(6) sage: G.structure_description() 'C6' sage: G.structure_description(latex=True) 'C_{6}' sage: G2 = G.direct_product(G, maps=False) sage: LatexExpr(G2.structure_description(latex=True)) C_{6} \times C_{6}
>>> from sage.all import * >>> # needs sage.groups >>> G = CyclicPermutationGroup(Integer(6)) >>> G.structure_description() 'C6' >>> G.structure_description(latex=True) 'C_{6}' >>> G2 = G.direct_product(G, maps=False) >>> LatexExpr(G2.structure_description(latex=True)) C_{6} \times C_{6}
This method is mainly intended for small groups or groups with few normal subgroups. Even then there are some surprises:
sage: D3 = DihedralGroup(3) # needs sage.groups sage: D3.structure_description() # needs sage.groups 'S3'
>>> from sage.all import * >>> D3 = DihedralGroup(Integer(3)) # needs sage.groups >>> D3.structure_description() # needs sage.groups 'S3'
We use the Sage notation for the degree of dihedral groups:
sage: D4 = DihedralGroup(4) # needs sage.groups sage: D4.structure_description() # needs sage.groups 'D4'
>>> from sage.all import * >>> D4 = DihedralGroup(Integer(4)) # needs sage.groups >>> D4.structure_description() # needs sage.groups 'D4'
Works for finitely presented groups (Issue #17573):
sage: F.<x, y> = FreeGroup() # needs sage.groups sage: G = F / [x^2*y^-1, x^3*y^2, x*y*x^-1*y^-1] # needs sage.groups sage: G.structure_description() # needs sage.groups 'C7'
>>> from sage.all import * >>> F = FreeGroup(names=('x', 'y',)); (x, y,) = F._first_ngens(2)# needs sage.groups >>> G = F / [x**Integer(2)*y**-Integer(1), x**Integer(3)*y**Integer(2), x*y*x**-Integer(1)*y**-Integer(1)] # needs sage.groups >>> G.structure_description() # needs sage.groups 'C7'
And matrix groups (Issue #17573):
sage: groups.matrix.GL(4,2).structure_description() # needs sage.libs.gap sage.modules 'A8'
>>> from sage.all import * >>> groups.matrix.GL(Integer(4),Integer(2)).structure_description() # needs sage.libs.gap sage.modules 'A8'
- subgroup(gens=None, gap_group=None, domain=None, category=None, canonicalize=True, check=True)[source]#
Wraps the
PermutationGroup_subgroup
constructor. The argumentgens
is a list of elements ofself
.EXAMPLES:
sage: G = PermutationGroup([(1,2,3),(3,4,5)]) sage: g = G((1,2,3)) sage: G.subgroup([g]) Subgroup generated by [(1,2,3)] of (Permutation Group with generators [(3,4,5), (1,2,3)])
>>> from sage.all import * >>> G = PermutationGroup([(Integer(1),Integer(2),Integer(3)),(Integer(3),Integer(4),Integer(5))]) >>> g = G((Integer(1),Integer(2),Integer(3))) >>> G.subgroup([g]) Subgroup generated by [(1,2,3)] of (Permutation Group with generators [(3,4,5), (1,2,3)])
- subgroups()[source]#
Return a list of all the subgroups of
self
.OUTPUT:
Each possible subgroup of
self
is contained once in the returned list. The list is in order, according to the size of the subgroups, from the trivial subgroup with one element on through up to the whole group. Conjugacy classes of subgroups are contiguous in the list.Warning
For even relatively small groups this method can take a very long time to execute, or create vast amounts of output. Likely both. Its purpose is instructional, as it can be useful for studying small groups. The 156 subgroups of the full symmetric group on 5 symbols of order 120, \(S_5\), can be computed in about a minute on commodity hardware in 2011. The 64 subgroups of the cyclic group of order \(30030 = 2\cdot 3\cdot 5\cdot 7\cdot 11\cdot 13\) takes about twice as long.
For faster results, which still exhibit the structure of the possible subgroups, use
conjugacy_classes_subgroups()
.EXAMPLES:
sage: G = SymmetricGroup(3) sage: G.subgroups() [Subgroup generated by [()] of (Symmetric group of order 3! as a permutation group), Subgroup generated by [(2,3)] of (Symmetric group of order 3! as a permutation group), Subgroup generated by [(1,2)] of (Symmetric group of order 3! as a permutation group), Subgroup generated by [(1,3)] of (Symmetric group of order 3! as a permutation group), Subgroup generated by [(1,2,3)] of (Symmetric group of order 3! as a permutation group), Subgroup generated by [(1,2,3), (2,3)] of (Symmetric group of order 3! as a permutation group)] sage: G = CyclicPermutationGroup(14) sage: G.subgroups() [Subgroup generated by [()] of (Cyclic group of order 14 as a permutation group), Subgroup generated by [(1,8)(2,9)(3,10)(4,11)(5,12)(6,13)(7,14)] of (Cyclic group of order 14 as a permutation group), Subgroup generated by [(1,3,5,7,9,11,13)(2,4,6,8,10,12,14)] of (Cyclic group of order 14 as a permutation group), Subgroup generated by [(1,3,5,7,9,11,13)(2,4,6,8,10,12,14), (1,2,3,4,5,6,7,8,9,10,11,12,13,14)] of (Cyclic group of order 14 as a permutation group)]
>>> from sage.all import * >>> G = SymmetricGroup(Integer(3)) >>> G.subgroups() [Subgroup generated by [()] of (Symmetric group of order 3! as a permutation group), Subgroup generated by [(2,3)] of (Symmetric group of order 3! as a permutation group), Subgroup generated by [(1,2)] of (Symmetric group of order 3! as a permutation group), Subgroup generated by [(1,3)] of (Symmetric group of order 3! as a permutation group), Subgroup generated by [(1,2,3)] of (Symmetric group of order 3! as a permutation group), Subgroup generated by [(1,2,3), (2,3)] of (Symmetric group of order 3! as a permutation group)] >>> G = CyclicPermutationGroup(Integer(14)) >>> G.subgroups() [Subgroup generated by [()] of (Cyclic group of order 14 as a permutation group), Subgroup generated by [(1,8)(2,9)(3,10)(4,11)(5,12)(6,13)(7,14)] of (Cyclic group of order 14 as a permutation group), Subgroup generated by [(1,3,5,7,9,11,13)(2,4,6,8,10,12,14)] of (Cyclic group of order 14 as a permutation group), Subgroup generated by [(1,3,5,7,9,11,13)(2,4,6,8,10,12,14), (1,2,3,4,5,6,7,8,9,10,11,12,13,14)] of (Cyclic group of order 14 as a permutation group)]
AUTHOR:
Rob Beezer (2011-01-24)
- sylow_subgroup(p)[source]#
Return a Sylow \(p\)-subgroup of the finite group \(G\), where \(p\) is a prime.
This is a \(p\)-subgroup of \(G\) whose index in \(G\) is coprime to \(p\).
Wraps the GAP function
SylowSubgroup
.EXAMPLES:
sage: G = PermutationGroup(['(1,2,3)', '(2,3)']) sage: G.sylow_subgroup(2) Subgroup generated by [(2,3)] of (Permutation Group with generators [(2,3), (1,2,3)]) sage: G.sylow_subgroup(5) Subgroup generated by [()] of (Permutation Group with generators [(2,3), (1,2,3)])
>>> from sage.all import * >>> G = PermutationGroup(['(1,2,3)', '(2,3)']) >>> G.sylow_subgroup(Integer(2)) Subgroup generated by [(2,3)] of (Permutation Group with generators [(2,3), (1,2,3)]) >>> G.sylow_subgroup(Integer(5)) Subgroup generated by [()] of (Permutation Group with generators [(2,3), (1,2,3)])
- transversals(point)[source]#
If G is a permutation group acting on the set \(X = \{1, 2, ...., n\}\) and H is the stabilizer subgroup of <integer>, a right (respectively left) transversal is a set containing exactly one element from each right (respectively left) coset of H. This method returns a right transversal of
self
by the stabilizer ofself
on <integer> position.EXAMPLES:
sage: G = PermutationGroup([ [(3,4)], [(1,3)] ]) sage: G.transversals(1) [(), (1,3,4), (1,4,3)] sage: G = PermutationGroup([[(1,2),(3,4)], [(1,2,3,4,10)]]) sage: G.transversals(1) [(), (1,2)(3,4), (1,3,2,10,4), (1,4,2,10,3), (1,10,4,3,2)] sage: G = PermutationGroup([ [('c','d')], [('a','c')] ]) sage: G.transversals('a') [(), ('a','c','d'), ('a','d','c')]
>>> from sage.all import * >>> G = PermutationGroup([ [(Integer(3),Integer(4))], [(Integer(1),Integer(3))] ]) >>> G.transversals(Integer(1)) [(), (1,3,4), (1,4,3)] >>> G = PermutationGroup([[(Integer(1),Integer(2)),(Integer(3),Integer(4))], [(Integer(1),Integer(2),Integer(3),Integer(4),Integer(10))]]) >>> G.transversals(Integer(1)) [(), (1,2)(3,4), (1,3,2,10,4), (1,4,2,10,3), (1,10,4,3,2)] >>> G = PermutationGroup([ [('c','d')], [('a','c')] ]) >>> G.transversals('a') [(), ('a','c','d'), ('a','d','c')]
- trivial_character()[source]#
Return the trivial character of
self
.EXAMPLES:
sage: SymmetricGroup(3).trivial_character() # needs sage.rings.number_field Character of Symmetric group of order 3! as a permutation group
>>> from sage.all import * >>> SymmetricGroup(Integer(3)).trivial_character() # needs sage.rings.number_field Character of Symmetric group of order 3! as a permutation group
- upper_central_series()[source]#
Return the upper central series of this group as a list of permutation groups.
EXAMPLES:
These computations use pseudo-random numbers, so we set the seed for reproducible testing:
sage: G = PermutationGroup([[(1,2,3),(4,5)],[(3,4)]]) sage: G.upper_central_series() [Subgroup generated by [()] of (Permutation Group with generators [(3,4), (1,2,3)(4,5)])]
>>> from sage.all import * >>> G = PermutationGroup([[(Integer(1),Integer(2),Integer(3)),(Integer(4),Integer(5))],[(Integer(3),Integer(4))]]) >>> G.upper_central_series() [Subgroup generated by [()] of (Permutation Group with generators [(3,4), (1,2,3)(4,5)])]
- class sage.groups.perm_gps.permgroup.PermutationGroup_subgroup(ambient, gens=None, gap_group=None, domain=None, category=None, canonicalize=True, check=True)[source]#
Bases:
PermutationGroup_generic
Subgroup subclass of
PermutationGroup_generic
, so instance methods are inherited.EXAMPLES:
sage: G = CyclicPermutationGroup(4) sage: gens = G.gens() sage: H = DihedralGroup(4) sage: H.subgroup(gens) Subgroup generated by [(1,2,3,4)] of (Dihedral group of order 8 as a permutation group) sage: K = H.subgroup(gens) sage: K.list() [(), (1,2,3,4), (1,3)(2,4), (1,4,3,2)] sage: K.ambient_group() Dihedral group of order 8 as a permutation group sage: K.gens() ((1,2,3,4),)
>>> from sage.all import * >>> G = CyclicPermutationGroup(Integer(4)) >>> gens = G.gens() >>> H = DihedralGroup(Integer(4)) >>> H.subgroup(gens) Subgroup generated by [(1,2,3,4)] of (Dihedral group of order 8 as a permutation group) >>> K = H.subgroup(gens) >>> K.list() [(), (1,2,3,4), (1,3)(2,4), (1,4,3,2)] >>> K.ambient_group() Dihedral group of order 8 as a permutation group >>> K.gens() ((1,2,3,4),)
- ambient_group()[source]#
Return the ambient group related to
self
.EXAMPLES:
An example involving the dihedral group on four elements, \(D_8\):
sage: G = DihedralGroup(4) sage: H = CyclicPermutationGroup(4) sage: gens = H.gens() sage: S = PermutationGroup_subgroup(G, list(gens)) sage: S.ambient_group() Dihedral group of order 8 as a permutation group sage: S.ambient_group() == G True
>>> from sage.all import * >>> G = DihedralGroup(Integer(4)) >>> H = CyclicPermutationGroup(Integer(4)) >>> gens = H.gens() >>> S = PermutationGroup_subgroup(G, list(gens)) >>> S.ambient_group() Dihedral group of order 8 as a permutation group >>> S.ambient_group() == G True
- is_normal(other=None)[source]#
Return
True
if this group is a normal subgroup ofother
. Ifother
is not specified, then it is assumed to be the ambient group.EXAMPLES:
sage: S = SymmetricGroup(['a','b','c']) sage: H = S.subgroup([('a', 'b', 'c')]); H Subgroup generated by [('a','b','c')] of (Symmetric group of order 3! as a permutation group) sage: H.is_normal() True
>>> from sage.all import * >>> S = SymmetricGroup(['a','b','c']) >>> H = S.subgroup([('a', 'b', 'c')]); H Subgroup generated by [('a','b','c')] of (Symmetric group of order 3! as a permutation group) >>> H.is_normal() True
- sage.groups.perm_gps.permgroup.direct_product_permgroups(P)[source]#
Takes the direct product of the permutation groups listed in
P
.EXAMPLES:
sage: G1 = AlternatingGroup([1,2,4,5]) sage: G2 = AlternatingGroup([3,4,6,7]) sage: D = direct_product_permgroups([G1,G2,G1]) sage: D.order() 1728 sage: D = direct_product_permgroups([G1]) sage: D == G1 True sage: direct_product_permgroups([]) Symmetric group of order 0! as a permutation group
>>> from sage.all import * >>> G1 = AlternatingGroup([Integer(1),Integer(2),Integer(4),Integer(5)]) >>> G2 = AlternatingGroup([Integer(3),Integer(4),Integer(6),Integer(7)]) >>> D = direct_product_permgroups([G1,G2,G1]) >>> D.order() 1728 >>> D = direct_product_permgroups([G1]) >>> D == G1 True >>> direct_product_permgroups([]) Symmetric group of order 0! as a permutation group
- sage.groups.perm_gps.permgroup.from_gap_list(G, src)[source]#
Convert a string giving a list of GAP permutations into a list of elements of
G
.EXAMPLES:
sage: from sage.groups.perm_gps.permgroup import from_gap_list sage: G = PermutationGroup([[(1,2,3),(4,5)],[(3,4)]]) sage: L = from_gap_list(G, "[(1,2,3)(4,5), (3,4)]"); L [(1,2,3)(4,5), (3,4)] sage: L[0].parent() is G True sage: L[1].parent() is G True
>>> from sage.all import * >>> from sage.groups.perm_gps.permgroup import from_gap_list >>> G = PermutationGroup([[(Integer(1),Integer(2),Integer(3)),(Integer(4),Integer(5))],[(Integer(3),Integer(4))]]) >>> L = from_gap_list(G, "[(1,2,3)(4,5), (3,4)]"); L [(1,2,3)(4,5), (3,4)] >>> L[Integer(0)].parent() is G True >>> L[Integer(1)].parent() is G True
- sage.groups.perm_gps.permgroup.hap_decorator(f)[source]#
A decorator for permutation group methods that require HAP. It checks to see that HAP is installed as well as checks that the argument
p
is either 0 or prime.EXAMPLES:
sage: # optional - gap_package_hap sage: from sage.groups.perm_gps.permgroup import hap_decorator sage: def foo(self, n, p=0): print("Done") sage: foo = hap_decorator(foo) sage: foo(None, 3) Done sage: foo(None, 3, 0) Done sage: foo(None, 3, 5) Done sage: foo(None, 3, 4) Traceback (most recent call last): ... ValueError: p must be 0 or prime
>>> from sage.all import * >>> # optional - gap_package_hap >>> from sage.groups.perm_gps.permgroup import hap_decorator >>> def foo(self, n, p=Integer(0)): print("Done") >>> foo = hap_decorator(foo) >>> foo(None, Integer(3)) Done >>> foo(None, Integer(3), Integer(0)) Done >>> foo(None, Integer(3), Integer(5)) Done >>> foo(None, Integer(3), Integer(4)) Traceback (most recent call last): ... ValueError: p must be 0 or prime
- sage.groups.perm_gps.permgroup.load_hap()[source]#
Load the GAP hap package into the default GAP interpreter interface.
EXAMPLES:
sage: sage.groups.perm_gps.permgroup.load_hap() # optional - gap_package_hap
>>> from sage.all import * >>> sage.groups.perm_gps.permgroup.load_hap() # optional - gap_package_hap