Conjugacy Classes Of The Symmetric Group#
AUTHORS:
Vincent Delecroix, Travis Scrimshaw (2014-11-23)
- class sage.groups.perm_gps.symgp_conjugacy_class.PermutationsConjugacyClass(P, part)[source]#
Bases:
SymmetricGroupConjugacyClassMixin
,ConjugacyClass
A conjugacy class of the permutations of \(n\).
INPUT:
P
– the permutations of \(n\)part
– a partition or an element ofP
- set()[source]#
The set of all elements in the conjugacy class
self
.EXAMPLES:
sage: G = Permutations(3) sage: g = G([2, 1, 3]) sage: C = G.conjugacy_class(g) # needs sage.combinat sage: S = [[1, 3, 2], [2, 1, 3], [3, 2, 1]] sage: C.set() == Set(G(x) for x in S) # needs sage.combinat True
>>> from sage.all import * >>> G = Permutations(Integer(3)) >>> g = G([Integer(2), Integer(1), Integer(3)]) >>> C = G.conjugacy_class(g) # needs sage.combinat >>> S = [[Integer(1), Integer(3), Integer(2)], [Integer(2), Integer(1), Integer(3)], [Integer(3), Integer(2), Integer(1)]] >>> C.set() == Set(G(x) for x in S) # needs sage.combinat True
- class sage.groups.perm_gps.symgp_conjugacy_class.SymmetricGroupConjugacyClass(group, part)[source]#
Bases:
SymmetricGroupConjugacyClassMixin
,ConjugacyClassGAP
A conjugacy class of the symmetric group.
INPUT:
group
– the symmetric grouppart
– a partition or an element ofgroup
- set()[source]#
The set of all elements in the conjugacy class
self
.EXAMPLES:
sage: G = SymmetricGroup(3) sage: g = G((1,2)) sage: C = G.conjugacy_class(g) # needs sage.combinat sage: S = [(2,3), (1,2), (1,3)] sage: C.set() == Set(G(x) for x in S) # needs sage.combinat True
>>> from sage.all import * >>> G = SymmetricGroup(Integer(3)) >>> g = G((Integer(1),Integer(2))) >>> C = G.conjugacy_class(g) # needs sage.combinat >>> S = [(Integer(2),Integer(3)), (Integer(1),Integer(2)), (Integer(1),Integer(3))] >>> C.set() == Set(G(x) for x in S) # needs sage.combinat True
- class sage.groups.perm_gps.symgp_conjugacy_class.SymmetricGroupConjugacyClassMixin(domain, part)[source]#
Bases:
object
Mixin class which contains methods for conjugacy classes of the symmetric group.
- partition()[source]#
Return the partition of
self
.EXAMPLES:
sage: G = SymmetricGroup(5) sage: g = G([(1,2), (3,4,5)]) sage: C = G.conjugacy_class(g) # needs sage.combinat
>>> from sage.all import * >>> G = SymmetricGroup(Integer(5)) >>> g = G([(Integer(1),Integer(2)), (Integer(3),Integer(4),Integer(5))]) >>> C = G.conjugacy_class(g) # needs sage.combinat
- sage.groups.perm_gps.symgp_conjugacy_class.conjugacy_class_iterator(part, S=None)[source]#
Return an iterator over the conjugacy class associated to the partition
part
.The elements are given as a list of tuples, each tuple being a cycle.
INPUT:
part
– partitionS
– (default: \(\{ 1, 2, \ldots, n \}\), where \(n\) is the size ofpart
) a set
OUTPUT: an iterator over the conjugacy class consisting of all permutations of the set
S
whose cycle type ispart
EXAMPLES:
sage: from sage.groups.perm_gps.symgp_conjugacy_class import conjugacy_class_iterator # needs sage.combinat sage: for p in conjugacy_class_iterator([2,2]): print(p) # needs sage.combinat [(1, 2), (3, 4)] [(1, 4), (2, 3)] [(1, 3), (2, 4)]
>>> from sage.all import * >>> from sage.groups.perm_gps.symgp_conjugacy_class import conjugacy_class_iterator # needs sage.combinat >>> for p in conjugacy_class_iterator([Integer(2),Integer(2)]): print(p) # needs sage.combinat [(1, 2), (3, 4)] [(1, 4), (2, 3)] [(1, 3), (2, 4)]
In order to get permutations, one just has to wrap:
sage: S = SymmetricGroup(5) sage: for p in conjugacy_class_iterator([3,2]): print(S(p)) # needs sage.combinat (1,3)(2,4,5) (1,3)(2,5,4) (1,2)(3,4,5) (1,2)(3,5,4) ... (1,4)(2,3,5) (1,4)(2,5,3)
>>> from sage.all import * >>> S = SymmetricGroup(Integer(5)) >>> for p in conjugacy_class_iterator([Integer(3),Integer(2)]): print(S(p)) # needs sage.combinat (1,3)(2,4,5) (1,3)(2,5,4) (1,2)(3,4,5) (1,2)(3,5,4) ... (1,4)(2,3,5) (1,4)(2,5,3)
Check that the number of elements is the number of elements in the conjugacy class:
sage: s = lambda p: sum(1 for _ in conjugacy_class_iterator(p)) sage: all(s(p) == p.conjugacy_class_size() for p in Partitions(5)) # needs sage.combinat True
>>> from sage.all import * >>> s = lambda p: sum(Integer(1) for _ in conjugacy_class_iterator(p)) >>> all(s(p) == p.conjugacy_class_size() for p in Partitions(Integer(5))) # needs sage.combinat True
It is also possible to specify any underlying set:
sage: it = conjugacy_class_iterator([2,2,2], 'abcdef') # needs sage.combinat sage: sorted(flatten(next(it))) # needs sage.combinat ['a', 'b', 'c', 'd', 'e', 'f'] sage: all(len(x) == 2 for x in next(it)) # needs sage.combinat True
>>> from sage.all import * >>> it = conjugacy_class_iterator([Integer(2),Integer(2),Integer(2)], 'abcdef') # needs sage.combinat >>> sorted(flatten(next(it))) # needs sage.combinat ['a', 'b', 'c', 'd', 'e', 'f'] >>> all(len(x) == Integer(2) for x in next(it)) # needs sage.combinat True
- sage.groups.perm_gps.symgp_conjugacy_class.default_representative(part, G)[source]#
Construct the default representative for the conjugacy class of cycle type
part
of a symmetric groupG
.Let \(\lambda\) be a partition of \(n\). We pick a representative by
\[(1, 2, \ldots, \lambda_1) (\lambda_1 + 1, \ldots, \lambda_1 + \lambda_2) (\lambda_1 + \lambda_2 + \cdots + \lambda_{\ell-1}, \ldots, n),\]where \(\ell\) is the length (or number of parts) of \(\lambda\).
INPUT:
part
– partitionG
– a symmetric group
EXAMPLES:
sage: from sage.groups.perm_gps.symgp_conjugacy_class import default_representative # needs sage.combinat sage: S = SymmetricGroup(4) sage: for p in Partitions(4): # needs sage.combinat ....: print(default_representative(p, S)) (1,2,3,4) (1,2,3) (1,2)(3,4) (1,2) ()
>>> from sage.all import * >>> from sage.groups.perm_gps.symgp_conjugacy_class import default_representative # needs sage.combinat >>> S = SymmetricGroup(Integer(4)) >>> for p in Partitions(Integer(4)): # needs sage.combinat ... print(default_representative(p, S)) (1,2,3,4) (1,2,3) (1,2)(3,4) (1,2) ()