Elements of Finite Algebras#
- class sage.algebras.finite_dimensional_algebras.finite_dimensional_algebra_element.FiniteDimensionalAlgebraElement[source]#
Bases:
AlgebraElement
Create an element of a
FiniteDimensionalAlgebra
using a multiplication table.INPUT:
A
– aFiniteDimensionalAlgebra
which will be the parentelt
– vector, matrix or element of the base field (default:None
)check
– boolean (default:True
); ifFalse
andelt
is a matrix, assume that it is known to be the matrix of an element
If
elt
is a vector or a matrix consisting of a single row, it is interpreted as a vector of coordinates with respect to the given basis ofA
. Ifelt
is a square matrix, it is interpreted as a multiplication matrix with respect to this basis.EXAMPLES:
sage: A = FiniteDimensionalAlgebra(GF(3), [Matrix([[1,0], [0,1]]), ....: Matrix([[0,1], [0,0]])]) sage: A(17) 2*e0 sage: A([1,1]) e0 + e1
>>> from sage.all import * >>> A = FiniteDimensionalAlgebra(GF(Integer(3)), [Matrix([[Integer(1),Integer(0)], [Integer(0),Integer(1)]]), ... Matrix([[Integer(0),Integer(1)], [Integer(0),Integer(0)]])]) >>> A(Integer(17)) 2*e0 >>> A([Integer(1),Integer(1)]) e0 + e1
- characteristic_polynomial()[source]#
Return the characteristic polynomial of
self
.Note
This function just returns the characteristic polynomial of the matrix of right multiplication by
self
. This may not be a very meaningful invariant if the algebra is not unitary and associative.EXAMPLES:
sage: B = FiniteDimensionalAlgebra(QQ, [Matrix([[1,0,0], [0,1,0], [0,0,0]]), ....: Matrix([[0,1,0], [0,0,0], [0,0,0]]), ....: Matrix([[0,0,0], [0,0,0], [0,0,1]])]) sage: B(0).characteristic_polynomial() # needs sage.libs.pari x^3 sage: b = B.random_element() sage: f = b.characteristic_polynomial(); f # random # needs sage.libs.pari x^3 - 8*x^2 + 16*x sage: f(b) == 0 # needs sage.libs.pari True
>>> from sage.all import * >>> B = FiniteDimensionalAlgebra(QQ, [Matrix([[Integer(1),Integer(0),Integer(0)], [Integer(0),Integer(1),Integer(0)], [Integer(0),Integer(0),Integer(0)]]), ... Matrix([[Integer(0),Integer(1),Integer(0)], [Integer(0),Integer(0),Integer(0)], [Integer(0),Integer(0),Integer(0)]]), ... Matrix([[Integer(0),Integer(0),Integer(0)], [Integer(0),Integer(0),Integer(0)], [Integer(0),Integer(0),Integer(1)]])]) >>> B(Integer(0)).characteristic_polynomial() # needs sage.libs.pari x^3 >>> b = B.random_element() >>> f = b.characteristic_polynomial(); f # random # needs sage.libs.pari x^3 - 8*x^2 + 16*x >>> f(b) == Integer(0) # needs sage.libs.pari True
- inverse()[source]#
Return the two-sided multiplicative inverse of
self
, if it exists.This assumes that the algebra to which
self
belongs is associative.Note
If an element of a finite-dimensional unitary associative algebra over a field admits a left inverse, then this is the unique left inverse, and it is also a right inverse.
EXAMPLES:
sage: C = FiniteDimensionalAlgebra(QQ, [Matrix([[1,0], [0,1]]), ....: Matrix([[0,1], [-1,0]])]) sage: C([1,2]).inverse() 1/5*e0 - 2/5*e1
>>> from sage.all import * >>> C = FiniteDimensionalAlgebra(QQ, [Matrix([[Integer(1),Integer(0)], [Integer(0),Integer(1)]]), ... Matrix([[Integer(0),Integer(1)], [-Integer(1),Integer(0)]])]) >>> C([Integer(1),Integer(2)]).inverse() 1/5*e0 - 2/5*e1
- is_invertible()[source]#
Return
True
ifself
has a two-sided multiplicative inverse.This assumes that the algebra to which
self
belongs is associative.Note
If an element of a unitary finite-dimensional algebra over a field admits a left inverse, then this is the unique left inverse, and it is also a right inverse.
EXAMPLES:
sage: C = FiniteDimensionalAlgebra(QQ, [Matrix([[1,0], [0,1]]), ....: Matrix([[0,1], [-1,0]])]) sage: C([1,2]).is_invertible() True sage: C(0).is_invertible() False
>>> from sage.all import * >>> C = FiniteDimensionalAlgebra(QQ, [Matrix([[Integer(1),Integer(0)], [Integer(0),Integer(1)]]), ... Matrix([[Integer(0),Integer(1)], [-Integer(1),Integer(0)]])]) >>> C([Integer(1),Integer(2)]).is_invertible() True >>> C(Integer(0)).is_invertible() False
- is_nilpotent()[source]#
Return
True
ifself
is nilpotent.EXAMPLES:
sage: C = FiniteDimensionalAlgebra(QQ, [Matrix([[1,0], [0,1]]), ....: Matrix([[0,1], [0,0]])]) sage: C([1,0]).is_nilpotent() False sage: C([0,1]).is_nilpotent() True sage: A = FiniteDimensionalAlgebra(QQ, [Matrix([0])]) sage: A([1]).is_nilpotent() True
>>> from sage.all import * >>> C = FiniteDimensionalAlgebra(QQ, [Matrix([[Integer(1),Integer(0)], [Integer(0),Integer(1)]]), ... Matrix([[Integer(0),Integer(1)], [Integer(0),Integer(0)]])]) >>> C([Integer(1),Integer(0)]).is_nilpotent() False >>> C([Integer(0),Integer(1)]).is_nilpotent() True >>> A = FiniteDimensionalAlgebra(QQ, [Matrix([Integer(0)])]) >>> A([Integer(1)]).is_nilpotent() True
- is_zerodivisor()[source]#
Return
True
ifself
is a left or right zero-divisor.EXAMPLES:
sage: C = FiniteDimensionalAlgebra(QQ, [Matrix([[1,0], [0,1]]), ....: Matrix([[0,1], [0,0]])]) sage: C([1,0]).is_zerodivisor() False sage: C([0,1]).is_zerodivisor() True
>>> from sage.all import * >>> C = FiniteDimensionalAlgebra(QQ, [Matrix([[Integer(1),Integer(0)], [Integer(0),Integer(1)]]), ... Matrix([[Integer(0),Integer(1)], [Integer(0),Integer(0)]])]) >>> C([Integer(1),Integer(0)]).is_zerodivisor() False >>> C([Integer(0),Integer(1)]).is_zerodivisor() True
- left_matrix()[source]#
Return the matrix for multiplication by
self
from the left.EXAMPLES:
sage: C = FiniteDimensionalAlgebra(QQ, [Matrix([[1,0,0], [0,0,0], [0,0,0]]), ....: Matrix([[0,1,0], [0,0,0], [0,0,0]]), ....: Matrix([[0,0,0], [0,1,0], [0,0,1]])]) sage: C([1,2,0]).left_matrix() [1 0 0] [0 1 0] [0 2 0]
>>> from sage.all import * >>> C = FiniteDimensionalAlgebra(QQ, [Matrix([[Integer(1),Integer(0),Integer(0)], [Integer(0),Integer(0),Integer(0)], [Integer(0),Integer(0),Integer(0)]]), ... Matrix([[Integer(0),Integer(1),Integer(0)], [Integer(0),Integer(0),Integer(0)], [Integer(0),Integer(0),Integer(0)]]), ... Matrix([[Integer(0),Integer(0),Integer(0)], [Integer(0),Integer(1),Integer(0)], [Integer(0),Integer(0),Integer(1)]])]) >>> C([Integer(1),Integer(2),Integer(0)]).left_matrix() [1 0 0] [0 1 0] [0 2 0]
- matrix()[source]#
Return the matrix for multiplication by
self
from the right.EXAMPLES:
sage: B = FiniteDimensionalAlgebra(QQ, [Matrix([[1,0,0], [0,1,0], [0,0,0]]), ....: Matrix([[0,1,0], [0,0,0], [0,0,0]]), ....: Matrix([[0,0,0], [0,0,0], [0,0,1]])]) sage: B(5).matrix() [5 0 0] [0 5 0] [0 0 5]
>>> from sage.all import * >>> B = FiniteDimensionalAlgebra(QQ, [Matrix([[Integer(1),Integer(0),Integer(0)], [Integer(0),Integer(1),Integer(0)], [Integer(0),Integer(0),Integer(0)]]), ... Matrix([[Integer(0),Integer(1),Integer(0)], [Integer(0),Integer(0),Integer(0)], [Integer(0),Integer(0),Integer(0)]]), ... Matrix([[Integer(0),Integer(0),Integer(0)], [Integer(0),Integer(0),Integer(0)], [Integer(0),Integer(0),Integer(1)]])]) >>> B(Integer(5)).matrix() [5 0 0] [0 5 0] [0 0 5]
- minimal_polynomial()[source]#
Return the minimal polynomial of
self
.EXAMPLES:
sage: B = FiniteDimensionalAlgebra(QQ, [Matrix([[1,0,0], [0,1,0], [0,0,0]]), ....: Matrix([[0,1,0], [0,0,0], [0,0,0]]), ....: Matrix([[0,0,0], [0,0,0], [0,0,1]])]) sage: B(0).minimal_polynomial() # needs sage.libs.pari x sage: b = B.random_element() sage: f = b.minimal_polynomial(); f # random # needs sage.libs.pari x^3 + 1/2*x^2 - 7/16*x + 1/16 sage: f(b) == 0 # needs sage.libs.pari True
>>> from sage.all import * >>> B = FiniteDimensionalAlgebra(QQ, [Matrix([[Integer(1),Integer(0),Integer(0)], [Integer(0),Integer(1),Integer(0)], [Integer(0),Integer(0),Integer(0)]]), ... Matrix([[Integer(0),Integer(1),Integer(0)], [Integer(0),Integer(0),Integer(0)], [Integer(0),Integer(0),Integer(0)]]), ... Matrix([[Integer(0),Integer(0),Integer(0)], [Integer(0),Integer(0),Integer(0)], [Integer(0),Integer(0),Integer(1)]])]) >>> B(Integer(0)).minimal_polynomial() # needs sage.libs.pari x >>> b = B.random_element() >>> f = b.minimal_polynomial(); f # random # needs sage.libs.pari x^3 + 1/2*x^2 - 7/16*x + 1/16 >>> f(b) == Integer(0) # needs sage.libs.pari True
- monomial_coefficients(copy=True)[source]#
Return a dictionary whose keys are indices of basis elements in the support of
self
and whose values are the corresponding coefficients.INPUT:
copy
– ignored
EXAMPLES:
sage: B = FiniteDimensionalAlgebra(QQ, [Matrix([[1,0], [0,1]]), ....: Matrix([[0,1], [-1,0]])]) sage: elt = B(Matrix([[1,1], [-1,1]])) sage: elt.monomial_coefficients() {0: 1, 1: 1}
>>> from sage.all import * >>> B = FiniteDimensionalAlgebra(QQ, [Matrix([[Integer(1),Integer(0)], [Integer(0),Integer(1)]]), ... Matrix([[Integer(0),Integer(1)], [-Integer(1),Integer(0)]])]) >>> elt = B(Matrix([[Integer(1),Integer(1)], [-Integer(1),Integer(1)]])) >>> elt.monomial_coefficients() {0: 1, 1: 1}
- vector()[source]#
Return
self
as a vector.EXAMPLES:
sage: B = FiniteDimensionalAlgebra(QQ, [Matrix([[1,0,0], [0,1,0], [0,0,0]]), ....: Matrix([[0,1,0], [0,0,0], [0,0,0]]), ....: Matrix([[0,0,0], [0,0,0], [0,0,1]])]) sage: B(5).vector() (5, 0, 5)
>>> from sage.all import * >>> B = FiniteDimensionalAlgebra(QQ, [Matrix([[Integer(1),Integer(0),Integer(0)], [Integer(0),Integer(1),Integer(0)], [Integer(0),Integer(0),Integer(0)]]), ... Matrix([[Integer(0),Integer(1),Integer(0)], [Integer(0),Integer(0),Integer(0)], [Integer(0),Integer(0),Integer(0)]]), ... Matrix([[Integer(0),Integer(0),Integer(0)], [Integer(0),Integer(0),Integer(0)], [Integer(0),Integer(0),Integer(1)]])]) >>> B(Integer(5)).vector() (5, 0, 5)