Free algebras#
AUTHORS:
David Kohel (2005-09)
William Stein (2006-11-01): add all doctests; implemented many things.
Simon King (2011-04): Put free algebras into the category framework. Reimplement free algebra constructor, using a
UniqueFactory
for handling different implementations of free algebras. Allow degree weights for free algebras in letterplace implementation.
EXAMPLES:
sage: F = FreeAlgebra(ZZ,3,'x,y,z')
sage: F.base_ring()
Integer Ring
sage: G = FreeAlgebra(F, 2, 'm,n'); G
Free Algebra on 2 generators (m, n) over Free Algebra on 3 generators (x, y, z) over Integer Ring
sage: G.base_ring()
Free Algebra on 3 generators (x, y, z) over Integer Ring
The above free algebra is based on a generic implementation. By
github issue #7797, there is a different implementation
FreeAlgebra_letterplace
based on Singular’s letterplace rings. It is currently restricted to
weighted homogeneous elements and is therefore not the default. But the
arithmetic is much faster than in the generic implementation.
Moreover, we can compute Groebner bases with degree bound for its
two-sided ideals, and thus provide ideal containment tests:
sage: F.<x,y,z> = FreeAlgebra(QQ, implementation='letterplace')
sage: F
Free Associative Unital Algebra on 3 generators (x, y, z) over Rational Field
sage: I = F*[x*y+y*z,x^2+x*y-y*x-y^2]*F
sage: I.groebner_basis(degbound=4)
Twosided Ideal (x*y + y*z,
x*x - y*x - y*y - y*z,
y*y*y - y*y*z + y*z*y - y*z*z,
y*y*x + y*y*z + y*z*x + y*z*z,
y*y*z*y - y*y*z*z + y*z*z*y - y*z*z*z,
y*z*y*y - y*z*y*z + y*z*z*y - y*z*z*z,
y*y*z*x + y*y*z*z + y*z*z*x + y*z*z*z,
y*z*y*x + y*z*y*z + y*z*z*x + y*z*z*z) of Free Associative Unital
Algebra on 3 generators (x, y, z) over Rational Field
sage: y*z*y*y*z*z + 2*y*z*y*z*z*x + y*z*y*z*z*z - y*z*z*y*z*x + y*z*z*z*z*x in I
True
Positive integral degree weights for the letterplace implementation was introduced in github issue #7797:
sage: F.<x,y,z> = FreeAlgebra(QQ, implementation='letterplace', degrees=[2,1,3])
sage: x.degree()
2
sage: y.degree()
1
sage: z.degree()
3
sage: I = F*[x*y-y*x, x^2+2*y*z, (x*y)^2-z^2]*F
sage: Q.<a,b,c> = F.quo(I)
sage: TestSuite(Q).run()
sage: a^2*b^2
c*c
- class sage.algebras.free_algebra.FreeAlgebraFactory#
Bases:
UniqueFactory
A constructor of free algebras.
See
free_algebra
for examples and corner cases.EXAMPLES:
sage: FreeAlgebra(GF(5),3,'x') Free Algebra on 3 generators (x0, x1, x2) over Finite Field of size 5 sage: F.<x,y,z> = FreeAlgebra(GF(5),3) sage: (x+y+z)^2 x^2 + x*y + x*z + y*x + y^2 + y*z + z*x + z*y + z^2 sage: FreeAlgebra(GF(5),3, 'xx, zba, Y') Free Algebra on 3 generators (xx, zba, Y) over Finite Field of size 5 sage: FreeAlgebra(GF(5),3, 'abc') Free Algebra on 3 generators (a, b, c) over Finite Field of size 5 sage: FreeAlgebra(GF(5),1, 'z') Free Algebra on 1 generators (z,) over Finite Field of size 5 sage: FreeAlgebra(GF(5),1, ['alpha']) Free Algebra on 1 generators (alpha,) over Finite Field of size 5 sage: FreeAlgebra(FreeAlgebra(ZZ,1,'a'), 2, 'x') Free Algebra on 2 generators (x0, x1) over Free Algebra on 1 generators (a,) over Integer Ring
Free algebras are globally unique:
sage: F = FreeAlgebra(ZZ,3,'x,y,z') sage: G = FreeAlgebra(ZZ,3,'x,y,z') sage: F is G True sage: F.<x,y,z> = FreeAlgebra(GF(5),3) # indirect doctest sage: F is loads(dumps(F)) True sage: F is FreeAlgebra(GF(5),['x','y','z']) True sage: copy(F) is F is loads(dumps(F)) True sage: TestSuite(F).run()
By github issue #7797, we provide a different implementation of free algebras, based on Singular’s “letterplace rings”. Our letterplace wrapper allows for choosing positive integral degree weights for the generators of the free algebra. However, only (weighted) homogeneous elements are supported. Of course, isomorphic algebras in different implementations are not identical:
sage: G = FreeAlgebra(GF(5),['x','y','z'], implementation='letterplace') sage: F == G False sage: G is FreeAlgebra(GF(5),['x','y','z'], implementation='letterplace') True sage: copy(G) is G is loads(dumps(G)) True sage: TestSuite(G).run()
sage: H = FreeAlgebra(GF(5),['x','y','z'], implementation='letterplace', degrees=[1,2,3]) sage: F != H != G True sage: H is FreeAlgebra(GF(5),['x','y','z'], implementation='letterplace', degrees=[1,2,3]) True sage: copy(H) is H is loads(dumps(H)) True sage: TestSuite(H).run()
Free algebras commute with their base ring.
sage: K.<a,b> = FreeAlgebra(QQ,2) sage: K.is_commutative() False sage: L.<c> = FreeAlgebra(K,1) sage: L.is_commutative() False sage: s = a*b^2 * c^3; s a*b^2*c^3 sage: parent(s) Free Algebra on 1 generators (c,) over Free Algebra on 2 generators (a, b) over Rational Field sage: c^3 * a * b^2 a*b^2*c^3
- create_key(base_ring, arg1=None, arg2=None, sparse=None, order=None, names=None, name=None, implementation=None, degrees=None)#
Create the key under which a free algebra is stored.
- create_object(version, key)#
Construct the free algebra that belongs to a unique key.
NOTE:
Of course, that method should not be called directly, since it does not use the cache of free algebras.
- class sage.algebras.free_algebra.FreeAlgebra_generic(R, n, names)#
Bases:
CombinatorialFreeModule
,Algebra
The free algebra on \(n\) generators over a base ring.
INPUT:
R
– a ringn
– an integernames
– the generator names
EXAMPLES:
sage: F.<x,y,z> = FreeAlgebra(QQ, 3); F Free Algebra on 3 generators (x, y, z) over Rational Field sage: mul(F.gens()) x*y*z sage: mul([ F.gen(i%3) for i in range(12) ]) x*y*z*x*y*z*x*y*z*x*y*z sage: mul([ F.gen(i%3) for i in range(12) ]) + mul([ F.gen(i%2) for i in range(12) ]) x*y*x*y*x*y*x*y*x*y*x*y + x*y*z*x*y*z*x*y*z*x*y*z sage: (2 + x*z + x^2)^2 + (x - y)^2 4 + 5*x^2 - x*y + 4*x*z - y*x + y^2 + x^4 + x^3*z + x*z*x^2 + x*z*x*z
- Element#
alias of
FreeAlgebraElement
- algebra_generators()#
Return the algebra generators of
self
.EXAMPLES:
sage: F = FreeAlgebra(ZZ,3,'x,y,z') sage: F.algebra_generators() Finite family {'x': x, 'y': y, 'z': z}
- g_algebra(relations, names=None, order='degrevlex', check=True)#
The \(G\)-Algebra derived from this algebra by relations.
By default is assumed, that two variables commute.
Todo
Coercion doesn’t work yet, there is some cheating about assumptions
The optional argument
check
controls checking the degeneracy conditions. Furthermore, the default values interfere with non-degeneracy conditions.
EXAMPLES:
sage: A.<x,y,z> = FreeAlgebra(QQ,3) sage: G = A.g_algebra({y*x: -x*y}) sage: (x,y,z) = G.gens() sage: x*y x*y sage: y*x -x*y sage: z*x x*z sage: (x,y,z) = A.gens() sage: G = A.g_algebra({y*x: -x*y+1}) sage: (x,y,z) = G.gens() sage: y*x -x*y + 1 sage: (x,y,z) = A.gens() sage: G = A.g_algebra({y*x: -x*y+z}) sage: (x,y,z) = G.gens() sage: y*x -x*y + z
- gen(i)#
The
i
-th generator of the algebra.EXAMPLES:
sage: F = FreeAlgebra(ZZ,3,'x,y,z') sage: F.gen(0) x
- gens()#
Return the generators of
self
.EXAMPLES:
sage: F = FreeAlgebra(ZZ,3,'x,y,z') sage: F.gens() (x, y, z)
- is_commutative()#
Return True if this free algebra is commutative.
EXAMPLES:
sage: R.<x> = FreeAlgebra(QQ,1) sage: R.is_commutative() True sage: R.<x,y> = FreeAlgebra(QQ,2) sage: R.is_commutative() False
- is_field(proof=True)#
Return True if this Free Algebra is a field, which is only if the base ring is a field and there are no generators
EXAMPLES:
sage: A = FreeAlgebra(QQ,0,'') sage: A.is_field() True sage: A = FreeAlgebra(QQ,1,'x') sage: A.is_field() False
- lie_polynomial(w)#
Return the Lie polynomial associated to the Lyndon word
w
. Ifw
is not Lyndon, then return the product of Lie polynomials of the Lyndon factorization ofw
.Given a Lyndon word \(w\), the Lie polynomial \(L_w\) is defined recursively by \(L_w = [L_u, L_v]\), where \(w = uv\) is the
standard factorization
of \(w\), and \(L_w = w\) when \(w\) is a single letter.INPUT:
w
– a word or an element of the free monoid
EXAMPLES:
sage: F = FreeAlgebra(QQ, 3, 'x,y,z') sage: M.<x,y,z> = FreeMonoid(3) sage: F.lie_polynomial(x*y) x*y - y*x sage: F.lie_polynomial(y*x) y*x sage: F.lie_polynomial(x^2*y*x) x^2*y*x - 2*x*y*x^2 + y*x^3 sage: F.lie_polynomial(y*z*x*z*x*z) y*z*x*z*x*z - y*z*x*z^2*x - y*z^2*x^2*z + y*z^2*x*z*x - z*y*x*z*x*z + z*y*x*z^2*x + z*y*z*x^2*z - z*y*z*x*z*x
- monoid()#
The free monoid of generators of the algebra.
EXAMPLES:
sage: F = FreeAlgebra(ZZ,3,'x,y,z') sage: F.monoid() Free monoid on 3 generators (x, y, z)
- ngens()#
The number of generators of the algebra.
EXAMPLES:
sage: F = FreeAlgebra(ZZ,3,'x,y,z') sage: F.ngens() 3
- one_basis()#
Return the index of the basis element \(1\).
EXAMPLES:
sage: F = FreeAlgebra(QQ, 2, 'x,y') sage: F.one_basis() 1 sage: F.one_basis().parent() Free monoid on 2 generators (x, y)
- pbw_basis()#
Return the Poincaré-Birkhoff-Witt (PBW) basis of
self
.EXAMPLES:
sage: F.<x,y> = FreeAlgebra(QQ, 2) sage: F.poincare_birkhoff_witt_basis() The Poincare-Birkhoff-Witt basis of Free Algebra on 2 generators (x, y) over Rational Field
- pbw_element(elt)#
Return the element
elt
in the Poincaré-Birkhoff-Witt basis.EXAMPLES:
sage: F.<x,y> = FreeAlgebra(QQ, 2) sage: F.pbw_element(x*y - y*x + 2) 2*PBW[1] + PBW[x*y] sage: F.pbw_element(F.one()) PBW[1] sage: F.pbw_element(x*y*x + x^3*y) PBW[x*y]*PBW[x] + PBW[y]*PBW[x]^2 + PBW[x^3*y] + 3*PBW[x^2*y]*PBW[x] + 3*PBW[x*y]*PBW[x]^2 + PBW[y]*PBW[x]^3
- poincare_birkhoff_witt_basis()#
Return the Poincaré-Birkhoff-Witt (PBW) basis of
self
.EXAMPLES:
sage: F.<x,y> = FreeAlgebra(QQ, 2) sage: F.poincare_birkhoff_witt_basis() The Poincare-Birkhoff-Witt basis of Free Algebra on 2 generators (x, y) over Rational Field
- product_on_basis(x, y)#
Return the product of the basis elements indexed by
x
andy
.EXAMPLES:
sage: F = FreeAlgebra(ZZ,3,'x,y,z') sage: I = F.basis().keys() sage: x,y,z = I.gens() sage: F.product_on_basis(x*y, z*y) x*y*z*y
- quo(mons, mats=None, names=None, **args)#
Return a quotient algebra.
The quotient algebra is defined via the action of a free algebra \(A\) on a (finitely generated) free module. The input for the quotient algebra is a list of monomials (in the underlying monoid for \(A\)) which form a free basis for the module of \(A\), and a list of matrices, which give the action of the free generators of \(A\) on this monomial basis.
EXAMPLES:
Here is the quaternion algebra defined in terms of three generators:
sage: n = 3 sage: A = FreeAlgebra(QQ,n,'i') sage: F = A.monoid() sage: i, j, k = F.gens() sage: mons = [ F(1), i, j, k ] sage: M = MatrixSpace(QQ,4) sage: mats = [M([0,1,0,0, -1,0,0,0, 0,0,0,-1, 0,0,1,0]), M([0,0,1,0, 0,0,0,1, -1,0,0,0, 0,-1,0,0]), M([0,0,0,1, 0,0,-1,0, 0,1,0,0, -1,0,0,0]) ] sage: H.<i,j,k> = A.quotient(mons, mats); H Free algebra quotient on 3 generators ('i', 'j', 'k') and dimension 4 over Rational Field
- quotient(mons, mats=None, names=None, **args)#
Return a quotient algebra.
The quotient algebra is defined via the action of a free algebra \(A\) on a (finitely generated) free module. The input for the quotient algebra is a list of monomials (in the underlying monoid for \(A\)) which form a free basis for the module of \(A\), and a list of matrices, which give the action of the free generators of \(A\) on this monomial basis.
EXAMPLES:
Here is the quaternion algebra defined in terms of three generators:
sage: n = 3 sage: A = FreeAlgebra(QQ,n,'i') sage: F = A.monoid() sage: i, j, k = F.gens() sage: mons = [ F(1), i, j, k ] sage: M = MatrixSpace(QQ,4) sage: mats = [M([0,1,0,0, -1,0,0,0, 0,0,0,-1, 0,0,1,0]), M([0,0,1,0, 0,0,0,1, -1,0,0,0, 0,-1,0,0]), M([0,0,0,1, 0,0,-1,0, 0,1,0,0, -1,0,0,0]) ] sage: H.<i,j,k> = A.quotient(mons, mats); H Free algebra quotient on 3 generators ('i', 'j', 'k') and dimension 4 over Rational Field
- class sage.algebras.free_algebra.PBWBasisOfFreeAlgebra(alg)#
Bases:
CombinatorialFreeModule
The Poincaré-Birkhoff-Witt basis of the free algebra.
EXAMPLES:
sage: F.<x,y> = FreeAlgebra(QQ, 2) sage: PBW = F.pbw_basis() sage: px, py = PBW.gens() sage: px * py PBW[x*y] + PBW[y]*PBW[x] sage: py * px PBW[y]*PBW[x] sage: px * py^3 * px - 2*px * py -2*PBW[x*y] - 2*PBW[y]*PBW[x] + PBW[x*y^3]*PBW[x] + 3*PBW[y]*PBW[x*y^2]*PBW[x] + 3*PBW[y]^2*PBW[x*y]*PBW[x] + PBW[y]^3*PBW[x]^2
We can convert between the two bases:
sage: p = PBW(x*y - y*x + 2); p 2*PBW[1] + PBW[x*y] sage: F(p) 2 + x*y - y*x sage: f = F.pbw_element(x*y*x + x^3*y + x + 3) sage: F(PBW(f)) == f True sage: p = px*py + py^4*px^2 sage: F(p) x*y + y^4*x^2 sage: PBW(F(p)) == p True
Note that multiplication in the PBW basis agrees with multiplication as monomials:
sage: F(px * py^3 * px - 2*px * py) == x*y^3*x - 2*x*y True
We verify Examples 1 and 2 in [MR1989]:
sage: F.<x,y,z> = FreeAlgebra(QQ) sage: PBW = F.pbw_basis() sage: PBW(x*y*z) PBW[x*y*z] + PBW[x*z*y] + PBW[y]*PBW[x*z] + PBW[y*z]*PBW[x] + PBW[z]*PBW[x*y] + PBW[z]*PBW[y]*PBW[x] sage: PBW(x*y*y*x) PBW[x*y^2]*PBW[x] + 2*PBW[y]*PBW[x*y]*PBW[x] + PBW[y]^2*PBW[x]^2
- class Element#
Bases:
IndexedFreeModuleElement
- expand()#
Expand
self
in the monomials of the free algebra.EXAMPLES:
sage: F = FreeAlgebra(QQ, 2, 'x,y') sage: PBW = F.pbw_basis() sage: x,y = F.monoid().gens() sage: f = PBW(x^2*y) + PBW(x) + PBW(y^4*x) sage: f.expand() x + x^2*y - 2*x*y*x + y*x^2 + y^4*x
- algebra_generators()#
Return the generators of
self
as an algebra.EXAMPLES:
sage: PBW = FreeAlgebra(QQ, 2, 'x,y').pbw_basis() sage: gens = PBW.algebra_generators(); gens (PBW[x], PBW[y]) sage: all(g.parent() is PBW for g in gens) True
- expansion(t)#
Return the expansion of the element
t
of the Poincaré-Birkhoff-Witt basis in the monomials of the free algebra.EXAMPLES:
sage: F = FreeAlgebra(QQ, 2, 'x,y') sage: PBW = F.pbw_basis() sage: x,y = F.monoid().gens() sage: PBW.expansion(PBW(x*y)) x*y - y*x sage: PBW.expansion(PBW.one()) 1 sage: PBW.expansion(PBW(x*y*x) + 2*PBW(x) + 3) 3 + 2*x + x*y*x - y*x^2
- free_algebra()#
Return the associated free algebra of
self
.EXAMPLES:
sage: PBW = FreeAlgebra(QQ, 2, 'x,y').pbw_basis() sage: PBW.free_algebra() Free Algebra on 2 generators (x, y) over Rational Field
- gen(i)#
Return the
i
-th generator ofself
.EXAMPLES:
sage: PBW = FreeAlgebra(QQ, 2, 'x,y').pbw_basis() sage: PBW.gen(0) PBW[x] sage: PBW.gen(1) PBW[y]
- gens()#
Return the generators of
self
as an algebra.EXAMPLES:
sage: PBW = FreeAlgebra(QQ, 2, 'x,y').pbw_basis() sage: gens = PBW.algebra_generators(); gens (PBW[x], PBW[y]) sage: all(g.parent() is PBW for g in gens) True
- one_basis()#
Return the index of the basis element for \(1\).
EXAMPLES:
sage: PBW = FreeAlgebra(QQ, 2, 'x,y').pbw_basis() sage: PBW.one_basis() 1 sage: PBW.one_basis().parent() Free monoid on 2 generators (x, y)
- product(u, v)#
Return the product of two elements
u
andv
.EXAMPLES:
sage: F = FreeAlgebra(QQ, 2, 'x,y') sage: PBW = F.pbw_basis() sage: x, y = PBW.gens() sage: PBW.product(x, y) PBW[x*y] + PBW[y]*PBW[x] sage: PBW.product(y, x) PBW[y]*PBW[x] sage: PBW.product(y^2*x, x*y*x) PBW[y]^2*PBW[x^2*y]*PBW[x] + 2*PBW[y]^2*PBW[x*y]*PBW[x]^2 + PBW[y]^3*PBW[x]^3
- sage.algebras.free_algebra.is_FreeAlgebra(x)#
Return True if x is a free algebra; otherwise, return False.
EXAMPLES:
sage: from sage.algebras.free_algebra import is_FreeAlgebra sage: is_FreeAlgebra(5) False sage: is_FreeAlgebra(ZZ) False sage: is_FreeAlgebra(FreeAlgebra(ZZ,100,'x')) True sage: is_FreeAlgebra(FreeAlgebra(ZZ,10,'x',implementation='letterplace')) True sage: is_FreeAlgebra(FreeAlgebra(ZZ,10,'x',implementation='letterplace', degrees=list(range(1,11)))) True