Free Fermions Super Lie Conformal Algebra.#
Given an \(R\)-module \(M\) with a skew-symmetric, bilinear pairing \(\langle\cdot, \cdot\rangle: M\otimes_R M \rightarrow R\). The Free Fermions super Lie conformal algebra associated to this datum is the free \(R[T]\)-super module generated by \(\Pi M\) (a purely odd copy of \(M\)) plus a central vector \(K\) satisfying \(TK=0\). The remaining \(\lambda\)-brackets are given by:
where \(v,w \in M\).
This is an H-graded Lie conformal algebra where every generator \(v \in M\) has degree \(1/2\).
AUTHORS:
Reimundo Heluani (2020-06-03): Initial implementation.
- class sage.algebras.lie_conformal_algebras.free_fermions_lie_conformal_algebra.FreeFermionsLieConformalAlgebra(R, ngens=None, gram_matrix=None, names=None, index_set=None)[source]#
Bases:
GradedLieConformalAlgebra
The Free Fermions Super Lie conformal algebra.
INPUT:
R
: a commutative ring.ngens
: a positive Integer (default1
); the number of non-central generators of this Lie conformal algebra.gram_matrix
: a symmetric square matrix with coefficients inR
(default:identity_matrix(ngens)
); the Gram matrix of the inner product
OUTPUT:
- The Free Fermions Lie conformal algebra with generators
\(\psi_i\), \(i=1,...,n\) and \(\lambda\)-brackets
\[[{\psi_i}_{\lambda} \psi_j] = M_{ij} K,\]
where \(n\) is the number of generators
ngens
and \(M\) is thegram_matrix
. This super Lie conformal algebra is \(H\)-graded where every generator has degree \(1/2\).EXAMPLES:
sage: R = lie_conformal_algebras.FreeFermions(QQbar); R The free Fermions super Lie conformal algebra with generators (psi, K) over Algebraic Field sage: R.inject_variables() Defining psi, K sage: psi.bracket(psi) {0: K} sage: R = lie_conformal_algebras.FreeFermions(QQbar,gram_matrix=Matrix([[0,1],[1,0]])); R The free Fermions super Lie conformal algebra with generators (psi_0, psi_1, K) over Algebraic Field sage: R.inject_variables() Defining psi_0, psi_1, K sage: psi_0.bracket(psi_1) {0: K} sage: psi_0.degree() 1/2 sage: R.category() Category of H-graded super finitely generated Lie conformal algebras with basis over Algebraic Field
>>> from sage.all import * >>> R = lie_conformal_algebras.FreeFermions(QQbar); R The free Fermions super Lie conformal algebra with generators (psi, K) over Algebraic Field >>> R.inject_variables() Defining psi, K >>> psi.bracket(psi) {0: K} >>> R = lie_conformal_algebras.FreeFermions(QQbar,gram_matrix=Matrix([[Integer(0),Integer(1)],[Integer(1),Integer(0)]])); R The free Fermions super Lie conformal algebra with generators (psi_0, psi_1, K) over Algebraic Field >>> R.inject_variables() Defining psi_0, psi_1, K >>> psi_0.bracket(psi_1) {0: K} >>> psi_0.degree() 1/2 >>> R.category() Category of H-graded super finitely generated Lie conformal algebras with basis over Algebraic Field
- gram_matrix()[source]#
The Gram matrix that specifies the \(\lambda\)-brackets of the generators.
EXAMPLES:
sage: R = lie_conformal_algebras.FreeFermions(QQ,ngens=2); sage: R.gram_matrix() [1 0] [0 1]
>>> from sage.all import * >>> R = lie_conformal_algebras.FreeFermions(QQ,ngens=Integer(2)); >>> R.gram_matrix() [1 0] [0 1]