The Poincare-Birkhoff-Witt Basis For A Universal Enveloping Algebra¶
AUTHORS:
Travis Scrimshaw (2013-11-03): Initial version
Travis Scrimshaw (2024-01-02): Adding the center
- class sage.algebras.lie_algebras.poincare_birkhoff_witt.PoincareBirkhoffWittBasis(g, basis_key, prefix, **kwds)[source]¶
Bases:
CombinatorialFreeModule
The Poincare-Birkhoff-Witt (PBW) basis of the universal enveloping algebra of a Lie algebra.
Consider a Lie algebra \(\mathfrak{g}\) with ordered basis \((b_1,\dots,b_n)\). Then the universal enveloping algebra \(U(\mathfrak{g})\) is generated by \(b_1,\dots,b_n\) and subject to the relations
\[[b_i, b_j] = \sum_{k = 1}^n c_{ij}^k b_k\]where \(c_{ij}^k\) are the structure coefficients of \(\mathfrak{g}\). The Poincare-Birkhoff-Witt (PBW) basis is given by the monomials \(b_1^{e_1} b_2^{e_2} \cdots b_n^{e_n}\). Specifically, we can rewrite \(b_j b_i = b_i b_j + [b_j, b_i]\) where \(j > i\), and we can repeat this to sort any monomial into
\[b_{i_1} \cdots b_{i_k} = b_1^{e_1} \cdots b_n^{e_n} + LOT\]where \(LOT\) are lower order terms. Thus the PBW basis is a filtered basis for \(U(\mathfrak{g})\).
EXAMPLES:
We construct the PBW basis of \(\mathfrak{sl}_2\):
sage: L = lie_algebras.three_dimensional_by_rank(QQ, 3, names=['E','F','H']) sage: PBW = L.pbw_basis()
>>> from sage.all import * >>> L = lie_algebras.three_dimensional_by_rank(QQ, Integer(3), names=['E','F','H']) >>> PBW = L.pbw_basis()
We then do some computations; in particular, we check that \([E, F] = H\):
sage: E, F, H = PBW.algebra_generators() sage: E * F PBW['E']*PBW['F'] sage: F * E PBW['E']*PBW['F'] - PBW['H'] sage: E * F - F * E PBW['H']
>>> from sage.all import * >>> E, F, H = PBW.algebra_generators() >>> E * F PBW['E']*PBW['F'] >>> F * E PBW['E']*PBW['F'] - PBW['H'] >>> E * F - F * E PBW['H']
Next we construct another instance of the PBW basis, but sorted in the reverse order:
sage: def neg_key(x): ....: return -L.basis().keys().index(x) sage: PBW2 = L.pbw_basis(prefix='PBW2', basis_key=neg_key)
>>> from sage.all import * >>> def neg_key(x): ... return -L.basis().keys().index(x) >>> PBW2 = L.pbw_basis(prefix='PBW2', basis_key=neg_key)
We then check the multiplication is preserved:
sage: PBW2(E) * PBW2(F) PBW2['F']*PBW2['E'] + PBW2['H'] sage: PBW2(E*F) PBW2['F']*PBW2['E'] + PBW2['H'] sage: F * E + H PBW['E']*PBW['F']
>>> from sage.all import * >>> PBW2(E) * PBW2(F) PBW2['F']*PBW2['E'] + PBW2['H'] >>> PBW2(E*F) PBW2['F']*PBW2['E'] + PBW2['H'] >>> F * E + H PBW['E']*PBW['F']
We now construct the PBW basis for Lie algebra of regular vector fields on \(\CC^{\times}\):
sage: L = lie_algebras.regular_vector_fields(QQ) sage: PBW = L.pbw_basis() sage: G = PBW.algebra_generators() sage: G[2] * G[3] PBW[2]*PBW[3] sage: G[3] * G[2] PBW[2]*PBW[3] + PBW[5] sage: G[-2] * G[3] * G[2] PBW[-2]*PBW[2]*PBW[3] + PBW[-2]*PBW[5]
>>> from sage.all import * >>> L = lie_algebras.regular_vector_fields(QQ) >>> PBW = L.pbw_basis() >>> G = PBW.algebra_generators() >>> G[Integer(2)] * G[Integer(3)] PBW[2]*PBW[3] >>> G[Integer(3)] * G[Integer(2)] PBW[2]*PBW[3] + PBW[5] >>> G[-Integer(2)] * G[Integer(3)] * G[Integer(2)] PBW[-2]*PBW[2]*PBW[3] + PBW[-2]*PBW[5]
Todo
When the Lie algebra is finite dimensional, set the ordering of the basis elements, translate the structure coefficients, and work with fixed-length lists as the exponent vectors. This way we only will run any nontrivial sorting only once and avoid other potentially expensive comparisons between keys.
- class Element[source]¶
Bases:
IndexedFreeModuleElement
- algebra_generators()[source]¶
Return the algebra generators of
self
.EXAMPLES:
sage: L = lie_algebras.sl(QQ, 2) sage: PBW = L.pbw_basis() sage: PBW.algebra_generators() Finite family {alpha[1]: PBW[alpha[1]], alphacheck[1]: PBW[alphacheck[1]], -alpha[1]: PBW[-alpha[1]]}
>>> from sage.all import * >>> L = lie_algebras.sl(QQ, Integer(2)) >>> PBW = L.pbw_basis() >>> PBW.algebra_generators() Finite family {alpha[1]: PBW[alpha[1]], alphacheck[1]: PBW[alphacheck[1]], -alpha[1]: PBW[-alpha[1]]}
- casimir_element(order=2, *args, **kwds)[source]¶
Return the Casimir element of
self
.See also
INPUT:
order
– (default:2
) the order of the Casimir element
EXAMPLES:
sage: L = LieAlgebra(QQ, cartan_type=['G', 2]) sage: U = L.pbw_basis() sage: C = U.casimir_element(); C 1/4*PBW[alpha[2]]*PBW[-alpha[2]] + 1/12*PBW[alpha[1]]*PBW[-alpha[1]] + 1/12*PBW[alpha[1] + alpha[2]]*PBW[-alpha[1] - alpha[2]] + 1/12*PBW[2*alpha[1] + alpha[2]]*PBW[-2*alpha[1] - alpha[2]] + 1/4*PBW[3*alpha[1] + alpha[2]]*PBW[-3*alpha[1] - alpha[2]] + 1/4*PBW[3*alpha[1] + 2*alpha[2]]*PBW[-3*alpha[1] - 2*alpha[2]] + 1/12*PBW[alphacheck[1]]^2 + 1/4*PBW[alphacheck[1]]*PBW[alphacheck[2]] + 1/4*PBW[alphacheck[2]]^2 - 5/12*PBW[alphacheck[1]] - 3/4*PBW[alphacheck[2]] sage: all(g * C == C * g for g in U.algebra_generators()) True
>>> from sage.all import * >>> L = LieAlgebra(QQ, cartan_type=['G', Integer(2)]) >>> U = L.pbw_basis() >>> C = U.casimir_element(); C 1/4*PBW[alpha[2]]*PBW[-alpha[2]] + 1/12*PBW[alpha[1]]*PBW[-alpha[1]] + 1/12*PBW[alpha[1] + alpha[2]]*PBW[-alpha[1] - alpha[2]] + 1/12*PBW[2*alpha[1] + alpha[2]]*PBW[-2*alpha[1] - alpha[2]] + 1/4*PBW[3*alpha[1] + alpha[2]]*PBW[-3*alpha[1] - alpha[2]] + 1/4*PBW[3*alpha[1] + 2*alpha[2]]*PBW[-3*alpha[1] - 2*alpha[2]] + 1/12*PBW[alphacheck[1]]^2 + 1/4*PBW[alphacheck[1]]*PBW[alphacheck[2]] + 1/4*PBW[alphacheck[2]]^2 - 5/12*PBW[alphacheck[1]] - 3/4*PBW[alphacheck[2]] >>> all(g * C == C * g for g in U.algebra_generators()) True
- center()[source]¶
Return the center of
self
.See also
EXAMPLES:
sage: g = LieAlgebra(QQ, cartan_type=['A', 2]) sage: U = g.pbw_basis() sage: U.center() Center of Universal enveloping algebra of Lie algebra of ['A', 2] in the Chevalley basis in the Poincare-Birkhoff-Witt basis sage: g = lie_algebras.Heisenberg(GF(3), 4) sage: U = g.pbw_basis() sage: U.center() Center of Universal enveloping algebra of Heisenberg algebra of rank 4 over Finite Field of size 3 in the Poincare-Birkhoff-Witt basis
>>> from sage.all import * >>> g = LieAlgebra(QQ, cartan_type=['A', Integer(2)]) >>> U = g.pbw_basis() >>> U.center() Center of Universal enveloping algebra of Lie algebra of ['A', 2] in the Chevalley basis in the Poincare-Birkhoff-Witt basis >>> g = lie_algebras.Heisenberg(GF(Integer(3)), Integer(4)) >>> U = g.pbw_basis() >>> U.center() Center of Universal enveloping algebra of Heisenberg algebra of rank 4 over Finite Field of size 3 in the Poincare-Birkhoff-Witt basis
- degree_on_basis(m)[source]¶
Return the degree of the basis element indexed by
m
.EXAMPLES:
sage: L = lie_algebras.sl(QQ, 2) sage: PBW = L.pbw_basis() sage: E,H,F = PBW.algebra_generators() sage: PBW.degree_on_basis(E.leading_support()) 1 sage: m = ((H*F)^10).trailing_support(key=PBW._monomial_key) # long time sage: PBW.degree_on_basis(m) # long time 20 sage: ((H*F*E)^4).maximal_degree() # long time 12
>>> from sage.all import * >>> L = lie_algebras.sl(QQ, Integer(2)) >>> PBW = L.pbw_basis() >>> E,H,F = PBW.algebra_generators() >>> PBW.degree_on_basis(E.leading_support()) 1 >>> m = ((H*F)**Integer(10)).trailing_support(key=PBW._monomial_key) # long time >>> PBW.degree_on_basis(m) # long time 20 >>> ((H*F*E)**Integer(4)).maximal_degree() # long time 12
- gens()[source]¶
Return the algebra generators of
self
.EXAMPLES:
sage: L = lie_algebras.sl(QQ, 2) sage: PBW = L.pbw_basis() sage: PBW.algebra_generators() Finite family {alpha[1]: PBW[alpha[1]], alphacheck[1]: PBW[alphacheck[1]], -alpha[1]: PBW[-alpha[1]]}
>>> from sage.all import * >>> L = lie_algebras.sl(QQ, Integer(2)) >>> PBW = L.pbw_basis() >>> PBW.algebra_generators() Finite family {alpha[1]: PBW[alpha[1]], alphacheck[1]: PBW[alphacheck[1]], -alpha[1]: PBW[-alpha[1]]}
- lie_algebra()[source]¶
Return the underlying Lie algebra of
self
.EXAMPLES:
sage: L = lie_algebras.sl(QQ, 2) sage: PBW = L.pbw_basis() sage: PBW.lie_algebra() is L True
>>> from sage.all import * >>> L = lie_algebras.sl(QQ, Integer(2)) >>> PBW = L.pbw_basis() >>> PBW.lie_algebra() is L True
- one_basis()[source]¶
Return the basis element indexing \(1\).
EXAMPLES:
sage: L = lie_algebras.three_dimensional_by_rank(QQ, 3, names=['E','F','H']) sage: PBW = L.pbw_basis() sage: ob = PBW.one_basis(); ob 1 sage: ob.parent() Free abelian monoid indexed by {'E', 'F', 'H'}
>>> from sage.all import * >>> L = lie_algebras.three_dimensional_by_rank(QQ, Integer(3), names=['E','F','H']) >>> PBW = L.pbw_basis() >>> ob = PBW.one_basis(); ob 1 >>> ob.parent() Free abelian monoid indexed by {'E', 'F', 'H'}
- product_on_basis(lhs, rhs)[source]¶
Return the product of the two basis elements
lhs
andrhs
.EXAMPLES:
sage: L = lie_algebras.three_dimensional_by_rank(QQ, 3, names=['E','F','H']) sage: PBW = L.pbw_basis() sage: I = PBW.indices() sage: PBW.product_on_basis(I.gen('E'), I.gen('F')) PBW['E']*PBW['F'] sage: PBW.product_on_basis(I.gen('E'), I.gen('H')) PBW['E']*PBW['H'] sage: PBW.product_on_basis(I.gen('H'), I.gen('E')) PBW['E']*PBW['H'] + 2*PBW['E'] sage: PBW.product_on_basis(I.gen('F'), I.gen('E')) PBW['E']*PBW['F'] - PBW['H'] sage: PBW.product_on_basis(I.gen('F'), I.gen('H')) PBW['F']*PBW['H'] sage: PBW.product_on_basis(I.gen('H'), I.gen('F')) PBW['F']*PBW['H'] - 2*PBW['F'] sage: PBW.product_on_basis(I.gen('H')**2, I.gen('F')**2) PBW['F']^2*PBW['H']^2 - 8*PBW['F']^2*PBW['H'] + 16*PBW['F']^2 sage: E,F,H = PBW.algebra_generators() sage: E*F - F*E PBW['H'] sage: H * F * E PBW['E']*PBW['F']*PBW['H'] - PBW['H']^2 sage: E * F * H * E PBW['E']^2*PBW['F']*PBW['H'] + 2*PBW['E']^2*PBW['F'] - PBW['E']*PBW['H']^2 - 2*PBW['E']*PBW['H']
>>> from sage.all import * >>> L = lie_algebras.three_dimensional_by_rank(QQ, Integer(3), names=['E','F','H']) >>> PBW = L.pbw_basis() >>> I = PBW.indices() >>> PBW.product_on_basis(I.gen('E'), I.gen('F')) PBW['E']*PBW['F'] >>> PBW.product_on_basis(I.gen('E'), I.gen('H')) PBW['E']*PBW['H'] >>> PBW.product_on_basis(I.gen('H'), I.gen('E')) PBW['E']*PBW['H'] + 2*PBW['E'] >>> PBW.product_on_basis(I.gen('F'), I.gen('E')) PBW['E']*PBW['F'] - PBW['H'] >>> PBW.product_on_basis(I.gen('F'), I.gen('H')) PBW['F']*PBW['H'] >>> PBW.product_on_basis(I.gen('H'), I.gen('F')) PBW['F']*PBW['H'] - 2*PBW['F'] >>> PBW.product_on_basis(I.gen('H')**Integer(2), I.gen('F')**Integer(2)) PBW['F']^2*PBW['H']^2 - 8*PBW['F']^2*PBW['H'] + 16*PBW['F']^2 >>> E,F,H = PBW.algebra_generators() >>> E*F - F*E PBW['H'] >>> H * F * E PBW['E']*PBW['F']*PBW['H'] - PBW['H']^2 >>> E * F * H * E PBW['E']^2*PBW['F']*PBW['H'] + 2*PBW['E']^2*PBW['F'] - PBW['E']*PBW['H']^2 - 2*PBW['E']*PBW['H']
- class sage.algebras.lie_algebras.poincare_birkhoff_witt.PoincareBirkhoffWittBasisSemisimpleLieAlgebra(g, basis_key=None, *args, **kwds)[source]¶
Bases:
PoincareBirkhoffWittBasis
The Poincare-Birkhoff-Witt basis of a finite dimensional triangular Kac-Moody Lie algebra (i.e., a semisimple Lie algebra).
- class Element[source]¶
Bases:
Element
- transpose()[source]¶
Return the transpose map of
self
.This is the transpose map on the Lie algebra extended as an anti-involution of
self
.EXAMPLES:
sage: g = LieAlgebra(QQ, cartan_type=['D', 4]) sage: U = g.pbw_basis() sage: e = U.e() sage: f = U.f() sage: elts = [e[1], e[1]*e[2], e[3]+e[4], e[1]*e[3]*e[4] + e[2], ....: f[1], f[1]*f[2], f[3]+f[4], e[1]*e[3]*e[4] + e[2], ....: e[1]*f[1], f[1]*e[1], (e[2]*f[2] - f[2]*e[2])^2] sage: all((b*bp).transpose() == bp.transpose() * b.transpose() ....: for b in elts for bp in elts) True
>>> from sage.all import * >>> g = LieAlgebra(QQ, cartan_type=['D', Integer(4)]) >>> U = g.pbw_basis() >>> e = U.e() >>> f = U.f() >>> elts = [e[Integer(1)], e[Integer(1)]*e[Integer(2)], e[Integer(3)]+e[Integer(4)], e[Integer(1)]*e[Integer(3)]*e[Integer(4)] + e[Integer(2)], ... f[Integer(1)], f[Integer(1)]*f[Integer(2)], f[Integer(3)]+f[Integer(4)], e[Integer(1)]*e[Integer(3)]*e[Integer(4)] + e[Integer(2)], ... e[Integer(1)]*f[Integer(1)], f[Integer(1)]*e[Integer(1)], (e[Integer(2)]*f[Integer(2)] - f[Integer(2)]*e[Integer(2)])**Integer(2)] >>> all((b*bp).transpose() == bp.transpose() * b.transpose() ... for b in elts for bp in elts) True
- contravariant_form(x, y)[source]¶
Return the (universal) contravariant form of
x
andy
.Let \(\varphi \colon U(\mathfrak{g}) \to U(\mathfrak{h})\) denote the projection onto the Cartan subalgebra and \(\tau\) be the transpose map. The (universal) contravariant form is defined as
\[(x, y) = \varphi(\tau(x) y).\]EXAMPLES:
sage: g = LieAlgebra(QQ, cartan_type=['G', 2]) sage: U = g.pbw_basis() sage: f1, f2 = U.f() sage: e1, e2 = U.e() sage: U.contravariant_form(U.one(), U.one()) 1 sage: U.contravariant_form(f1, f1) PBW[alphacheck[1]] sage: U.contravariant_form(f2, f2) PBW[alphacheck[2]] sage: U.contravariant_form(f1*f2, f1*f2) PBW[alphacheck[1]]*PBW[alphacheck[2]] + 3*PBW[alphacheck[2]] sage: U.contravariant_form(e1*e1*e2, e2*e1*e2) 0 sage: cas = U.casimir_element() sage: ccc = U.contravariant_form(cas, cas); ccc 1/144*PBW[alphacheck[1]]^4 + 1/24*PBW[alphacheck[1]]^3*PBW[alphacheck[2]] + 5/48*PBW[alphacheck[1]]^2*PBW[alphacheck[2]]^2 + 1/8*PBW[alphacheck[1]]*PBW[alphacheck[2]]^3 + 1/16*PBW[alphacheck[2]]^4 + 5/72*PBW[alphacheck[1]]^3 + 1/3*PBW[alphacheck[1]]^2*PBW[alphacheck[2]] + 7/12*PBW[alphacheck[1]]*PBW[alphacheck[2]]^2 + 3/8*PBW[alphacheck[2]]^3 + 25/144*PBW[alphacheck[1]]^2 + 5/8*PBW[alphacheck[1]]*PBW[alphacheck[2]] + 9/16*PBW[alphacheck[2]]^2 sage: ccc.parent() is U True
>>> from sage.all import * >>> g = LieAlgebra(QQ, cartan_type=['G', Integer(2)]) >>> U = g.pbw_basis() >>> f1, f2 = U.f() >>> e1, e2 = U.e() >>> U.contravariant_form(U.one(), U.one()) 1 >>> U.contravariant_form(f1, f1) PBW[alphacheck[1]] >>> U.contravariant_form(f2, f2) PBW[alphacheck[2]] >>> U.contravariant_form(f1*f2, f1*f2) PBW[alphacheck[1]]*PBW[alphacheck[2]] + 3*PBW[alphacheck[2]] >>> U.contravariant_form(e1*e1*e2, e2*e1*e2) 0 >>> cas = U.casimir_element() >>> ccc = U.contravariant_form(cas, cas); ccc 1/144*PBW[alphacheck[1]]^4 + 1/24*PBW[alphacheck[1]]^3*PBW[alphacheck[2]] + 5/48*PBW[alphacheck[1]]^2*PBW[alphacheck[2]]^2 + 1/8*PBW[alphacheck[1]]*PBW[alphacheck[2]]^3 + 1/16*PBW[alphacheck[2]]^4 + 5/72*PBW[alphacheck[1]]^3 + 1/3*PBW[alphacheck[1]]^2*PBW[alphacheck[2]] + 7/12*PBW[alphacheck[1]]*PBW[alphacheck[2]]^2 + 3/8*PBW[alphacheck[2]]^3 + 25/144*PBW[alphacheck[1]]^2 + 5/8*PBW[alphacheck[1]]*PBW[alphacheck[2]] + 9/16*PBW[alphacheck[2]]^2 >>> ccc.parent() is U True
- e(i=None)[source]¶
Return the generators \(e\) of
self
.INPUT:
i
– (optional) if specified, return just the generator \(e_i\)
EXAMPLES:
sage: U = lie_algebras.so(QQ, 5).pbw_basis() sage: U.e() Finite family {1: PBW[alpha[1]], 2: PBW[alpha[2]]} sage: U.e(1) PBW[alpha[1]]
>>> from sage.all import * >>> U = lie_algebras.so(QQ, Integer(5)).pbw_basis() >>> U.e() Finite family {1: PBW[alpha[1]], 2: PBW[alpha[2]]} >>> U.e(Integer(1)) PBW[alpha[1]]
- f(i=None)[source]¶
Return the generators \(f\) of
self
.INPUT:
i
– (optional) if specified, return just the generator \(f_i\)
EXAMPLES:
sage: U = lie_algebras.so(QQ, 5).pbw_basis() sage: U.f() Finite family {1: PBW[-alpha[1]], 2: PBW[-alpha[2]]} sage: U.f(1) PBW[-alpha[1]]
>>> from sage.all import * >>> U = lie_algebras.so(QQ, Integer(5)).pbw_basis() >>> U.f() Finite family {1: PBW[-alpha[1]], 2: PBW[-alpha[2]]} >>> U.f(Integer(1)) PBW[-alpha[1]]
- transpose()[source]¶
The transpose map.
EXAMPLES:
sage: g = LieAlgebra(QQ, cartan_type=['F', 4]) sage: U = g.pbw_basis() sage: U.transpose Generic endomorphism of Universal enveloping algebra of Lie algebra of ['F', 4] in the Chevalley basis in the Poincare-Birkhoff-Witt basis
>>> from sage.all import * >>> g = LieAlgebra(QQ, cartan_type=['F', Integer(4)]) >>> U = g.pbw_basis() >>> U.transpose Generic endomorphism of Universal enveloping algebra of Lie algebra of ['F', 4] in the Chevalley basis in the Poincare-Birkhoff-Witt basis