Free Pre-Lie Algebras#

AUTHORS:

  • Florent Hivert, Frédéric Chapoton (2011)

class sage.combinat.free_prelie_algebra.FreePreLieAlgebra(R, names=None)[source]#

Bases: CombinatorialFreeModule

The free pre-Lie algebra.

Pre-Lie algebras are non-associative algebras, where the product \(*\) satisfies

\[(x * y) * z - x * (y * z) = (x * z) * y - x * (z * y).\]

We use here the convention where the associator

\[(x, y, z) := (x * y) * z - x * (y * z)\]

is symmetric in its two rightmost arguments. This is sometimes called a right pre-Lie algebra.

They have appeared in numerical analysis and deformation theory.

The free Pre-Lie algebra on a given set \(E\) has an explicit description using rooted trees, just as the free associative algebra can be described using words. The underlying vector space has a basis indexed by finite rooted trees endowed with a map from their vertices to \(E\). In this basis, the product of two (decorated) rooted trees \(S * T\) is the sum over vertices of \(S\) of the rooted tree obtained by adding one edge from the root of \(T\) to the given vertex of \(S\). The root of these trees is taken to be the root of \(S\). The free pre-Lie algebra can also be considered as the free algebra over the PreLie operad.

Warning

The usual binary operator * can be used for the pre-Lie product. Beware that it but must be parenthesized properly, as the pre-Lie product is not associative. By default, a multiple product will be taken with left parentheses.

EXAMPLES:

sage: F = algebras.FreePreLie(ZZ, 'xyz')
sage: x,y,z = F.gens()
sage: (x * y) * z
B[x[y[z[]]]] + B[x[y[], z[]]]
sage: (x * y) * z - x * (y * z) == (x * z) * y - x * (z * y)
True
>>> from sage.all import *
>>> F = algebras.FreePreLie(ZZ, 'xyz')
>>> x,y,z = F.gens()
>>> (x * y) * z
B[x[y[z[]]]] + B[x[y[], z[]]]
>>> (x * y) * z - x * (y * z) == (x * z) * y - x * (z * y)
True

The free pre-Lie algebra is non-associative:

sage: x * (y * z) == (x * y) * z
False
>>> from sage.all import *
>>> x * (y * z) == (x * y) * z
False

The default product is with left parentheses:

sage: x * y * z == (x * y) * z
True
sage: x * y * z * x == ((x * y) * z) * x
True
>>> from sage.all import *
>>> x * y * z == (x * y) * z
True
>>> x * y * z * x == ((x * y) * z) * x
True

The NAP product as defined in [Liv2006] is also implemented on the same vector space:

sage: N = F.nap_product
sage: N(x*y,z*z)
B[x[y[], z[z[]]]]
>>> from sage.all import *
>>> N = F.nap_product
>>> N(x*y,z*z)
B[x[y[], z[z[]]]]

When None is given as input, unlabelled trees are used instead:

sage: F1 = algebras.FreePreLie(QQ, None)
sage: w = F1.gen(0); w
B[[]]
sage: w * w * w * w
B[[[[[]]]]] + B[[[[], []]]] + 3*B[[[], [[]]]] + B[[[], [], []]]
>>> from sage.all import *
>>> F1 = algebras.FreePreLie(QQ, None)
>>> w = F1.gen(Integer(0)); w
B[[]]
>>> w * w * w * w
B[[[[[]]]]] + B[[[[], []]]] + 3*B[[[], [[]]]] + B[[[], [], []]]

However, it is equally possible to use labelled trees instead:

sage: F1 = algebras.FreePreLie(QQ, 'q')
sage: w = F1.gen(0); w
B[q[]]
sage: w * w * w * w
B[q[q[q[q[]]]]] + B[q[q[q[], q[]]]] + 3*B[q[q[], q[q[]]]] + B[q[q[], q[], q[]]]
>>> from sage.all import *
>>> F1 = algebras.FreePreLie(QQ, 'q')
>>> w = F1.gen(Integer(0)); w
B[q[]]
>>> w * w * w * w
B[q[q[q[q[]]]]] + B[q[q[q[], q[]]]] + 3*B[q[q[], q[q[]]]] + B[q[q[], q[], q[]]]

The set \(E\) can be infinite:

sage: F = algebras.FreePreLie(QQ, ZZ)
sage: w = F.gen(1); w
B[1[]]
sage: x = F.gen(2); x
B[-1[]]
sage: y = F.gen(3); y
B[2[]]
sage: w*x
B[1[-1[]]]
sage: (w*x)*y
B[1[-1[2[]]]] + B[1[-1[], 2[]]]
sage: w*(x*y)
B[1[-1[2[]]]]
>>> from sage.all import *
>>> F = algebras.FreePreLie(QQ, ZZ)
>>> w = F.gen(Integer(1)); w
B[1[]]
>>> x = F.gen(Integer(2)); x
B[-1[]]
>>> y = F.gen(Integer(3)); y
B[2[]]
>>> w*x
B[1[-1[]]]
>>> (w*x)*y
B[1[-1[2[]]]] + B[1[-1[], 2[]]]
>>> w*(x*y)
B[1[-1[2[]]]]

Elements of a free pre-Lie algebra can be lifted to the universal enveloping algebra of the associated Lie algebra. The universal enveloping algebra is the Grossman-Larson Hopf algebra:

sage: F = algebras.FreePreLie(QQ,'abc')
sage: a,b,c = F.gens()
sage: (a*b+b*c).lift()
B[#[a[b[]]]] + B[#[b[c[]]]]
>>> from sage.all import *
>>> F = algebras.FreePreLie(QQ,'abc')
>>> a,b,c = F.gens()
>>> (a*b+b*c).lift()
B[#[a[b[]]]] + B[#[b[c[]]]]

Note

Variables names can be None, a list of strings, a string or an integer. When None is given, unlabelled rooted trees are used. When a single string is given, each letter is taken as a variable. See sage.combinat.words.alphabet.build_alphabet().

Warning

Beware that the underlying combinatorial free module is based either on RootedTrees or on LabelledRootedTrees, with no restriction on the labellings. This means that all code calling the basis() method would not give meaningful results, since basis() returns many “chaff” elements that do not belong to the algebra.

REFERENCES:

class Element[source]#

Bases: IndexedFreeModuleElement

lift()[source]#

Lift element to the Grossman-Larson algebra.

EXAMPLES:

sage: F = algebras.FreePreLie(QQ,'abc')
sage: elt = F.an_element().lift(); elt
B[#[a[a[a[a[]]]]]] + B[#[a[a[], a[a[]]]]]
sage: parent(elt)
Grossman-Larson Hopf algebra on 3 generators ['a', 'b', 'c']
over Rational Field
>>> from sage.all import *
>>> F = algebras.FreePreLie(QQ,'abc')
>>> elt = F.an_element().lift(); elt
B[#[a[a[a[a[]]]]]] + B[#[a[a[], a[a[]]]]]
>>> parent(elt)
Grossman-Larson Hopf algebra on 3 generators ['a', 'b', 'c']
over Rational Field
valuation()[source]#

Return the valuation of self.

EXAMPLES:

sage: a = algebras.FreePreLie(QQ).gen(0)
sage: a.valuation()
1
sage: (a*a).valuation()
2

sage: a, b = algebras.FreePreLie(QQ,'ab').gens()
sage: (a+b).valuation()
1
sage: (a*b).valuation()
2
sage: (a*b+a).valuation()
1
>>> from sage.all import *
>>> a = algebras.FreePreLie(QQ).gen(Integer(0))
>>> a.valuation()
1
>>> (a*a).valuation()
2

>>> a, b = algebras.FreePreLie(QQ,'ab').gens()
>>> (a+b).valuation()
1
>>> (a*b).valuation()
2
>>> (a*b+a).valuation()
1
algebra_generators()[source]#

Return the generators of this algebra.

These are the rooted trees with just one vertex.

EXAMPLES:

sage: A = algebras.FreePreLie(ZZ, 'fgh'); A
Free PreLie algebra on 3 generators ['f', 'g', 'h']
 over Integer Ring
sage: list(A.algebra_generators())
[B[f[]], B[g[]], B[h[]]]

sage: A = algebras.FreePreLie(QQ, ['x1','x2'])
sage: list(A.algebra_generators())
[B[x1[]], B[x2[]]]
>>> from sage.all import *
>>> A = algebras.FreePreLie(ZZ, 'fgh'); A
Free PreLie algebra on 3 generators ['f', 'g', 'h']
 over Integer Ring
>>> list(A.algebra_generators())
[B[f[]], B[g[]], B[h[]]]

>>> A = algebras.FreePreLie(QQ, ['x1','x2'])
>>> list(A.algebra_generators())
[B[x1[]], B[x2[]]]
an_element()[source]#

Return an element of self.

EXAMPLES:

sage: A = algebras.FreePreLie(QQ, 'xy')
sage: A.an_element()
B[x[x[x[x[]]]]] + B[x[x[], x[x[]]]]
>>> from sage.all import *
>>> A = algebras.FreePreLie(QQ, 'xy')
>>> A.an_element()
B[x[x[x[x[]]]]] + B[x[x[], x[x[]]]]
bracket_on_basis(x, y)[source]#

Return the Lie bracket of two trees.

This is the commutator \([x, y] = x * y - y * x\) of the pre-Lie product.

EXAMPLES:

sage: A = algebras.FreePreLie(QQ, None)
sage: RT = A.basis().keys()
sage: x = RT([RT([])])
sage: y = RT([x])
sage: A.bracket_on_basis(x, y)
-B[[[[], [[]]]]] + B[[[], [[[]]]]] - B[[[[]], [[]]]]
>>> from sage.all import *
>>> A = algebras.FreePreLie(QQ, None)
>>> RT = A.basis().keys()
>>> x = RT([RT([])])
>>> y = RT([x])
>>> A.bracket_on_basis(x, y)
-B[[[[], [[]]]]] + B[[[], [[[]]]]] - B[[[[]], [[]]]]
change_ring(R)[source]#

Return the free pre-Lie algebra in the same variables over \(R\).

INPUT:

  • \(R\) – a ring

EXAMPLES:

sage: A = algebras.FreePreLie(ZZ, 'fgh')
sage: A.change_ring(QQ)
Free PreLie algebra on 3 generators ['f', 'g', 'h'] over
Rational Field
>>> from sage.all import *
>>> A = algebras.FreePreLie(ZZ, 'fgh')
>>> A.change_ring(QQ)
Free PreLie algebra on 3 generators ['f', 'g', 'h'] over
Rational Field
construction()[source]#

Return a pair (F, R), where F is a PreLieFunctor and \(R\) is a ring, such that F(R) returns self.

EXAMPLES:

sage: P = algebras.FreePreLie(ZZ, 'x,y')
sage: x,y = P.gens()
sage: F, R = P.construction()
sage: F
PreLie[x,y]
sage: R
Integer Ring
sage: F(ZZ) is P
True
sage: F(QQ)
Free PreLie algebra on 2 generators ['x', 'y'] over Rational Field
>>> from sage.all import *
>>> P = algebras.FreePreLie(ZZ, 'x,y')
>>> x,y = P.gens()
>>> F, R = P.construction()
>>> F
PreLie[x,y]
>>> R
Integer Ring
>>> F(ZZ) is P
True
>>> F(QQ)
Free PreLie algebra on 2 generators ['x', 'y'] over Rational Field
corolla(x, y, n, N)[source]#

Return the corolla obtained with x as root and y as leaves.

INPUT:

  • x, y – two elements

  • n – integer; width of the corolla

  • N – integer; truncation order (up to order N included)

OUTPUT:

the sum over all possible ways to graft n copies of y on top of x (with at most N vertices in total)

This operation can be defined by induction starting from the pre-Lie product.

EXAMPLES:

sage: A = algebras.FreePreLie(QQ)
sage: a = A.gen(0)
sage: b = A.corolla(a,a,1,4); b
B[[[]]]
sage: A.corolla(b,b,2,7)
B[[[[[]], [[]]]]] + 2*B[[[[]], [[[]]]]] + B[[[], [[]], [[]]]]

sage: A = algebras.FreePreLie(QQ, 'o')
sage: a = A.gen(0)
sage: b = A.corolla(a,a,1,4)

sage: A = algebras.FreePreLie(QQ,'ab')
sage: a, b = A.gens()
sage: A.corolla(a,b,1,4)
B[a[b[]]]
sage: A.corolla(b,a,3,4)
B[b[a[], a[], a[]]]

sage: A.corolla(a+b,a+b,2,4)
B[a[a[], a[]]] + 2*B[a[a[], b[]]] + B[a[b[], b[]]] + B[b[a[], a[]]] +
2*B[b[a[], b[]]] + B[b[b[], b[]]]
>>> from sage.all import *
>>> A = algebras.FreePreLie(QQ)
>>> a = A.gen(Integer(0))
>>> b = A.corolla(a,a,Integer(1),Integer(4)); b
B[[[]]]
>>> A.corolla(b,b,Integer(2),Integer(7))
B[[[[[]], [[]]]]] + 2*B[[[[]], [[[]]]]] + B[[[], [[]], [[]]]]

>>> A = algebras.FreePreLie(QQ, 'o')
>>> a = A.gen(Integer(0))
>>> b = A.corolla(a,a,Integer(1),Integer(4))

>>> A = algebras.FreePreLie(QQ,'ab')
>>> a, b = A.gens()
>>> A.corolla(a,b,Integer(1),Integer(4))
B[a[b[]]]
>>> A.corolla(b,a,Integer(3),Integer(4))
B[b[a[], a[], a[]]]

>>> A.corolla(a+b,a+b,Integer(2),Integer(4))
B[a[a[], a[]]] + 2*B[a[a[], b[]]] + B[a[b[], b[]]] + B[b[a[], a[]]] +
2*B[b[a[], b[]]] + B[b[b[], b[]]]
degree_on_basis(t)[source]#

Return the degree of a rooted tree in the free Pre-Lie algebra.

This is the number of vertices.

EXAMPLES:

sage: A = algebras.FreePreLie(QQ, None)
sage: RT = A.basis().keys()
sage: A.degree_on_basis(RT([RT([])]))
2
>>> from sage.all import *
>>> A = algebras.FreePreLie(QQ, None)
>>> RT = A.basis().keys()
>>> A.degree_on_basis(RT([RT([])]))
2
gen(i)[source]#

Return the i-th generator of the algebra.

INPUT:

  • i – an integer

EXAMPLES:

sage: F = algebras.FreePreLie(ZZ, 'xyz')
sage: F.gen(0)
B[x[]]

sage: F.gen(4)
Traceback (most recent call last):
...
IndexError: argument i (= 4) must be between 0 and 2
>>> from sage.all import *
>>> F = algebras.FreePreLie(ZZ, 'xyz')
>>> F.gen(Integer(0))
B[x[]]

>>> F.gen(Integer(4))
Traceback (most recent call last):
...
IndexError: argument i (= 4) must be between 0 and 2
gens()[source]#

Return the generators of self (as an algebra).

EXAMPLES:

sage: A = algebras.FreePreLie(ZZ, 'fgh')
sage: A.gens()
(B[f[]], B[g[]], B[h[]])
>>> from sage.all import *
>>> A = algebras.FreePreLie(ZZ, 'fgh')
>>> A.gens()
(B[f[]], B[g[]], B[h[]])
group_product(x, y, n, N=10)[source]#

Return the truncated group product of x and y.

This is a weighted sum of all corollas with up to n leaves, with x as root and y as leaves.

The result is computed up to order N (included).

When considered with infinitely many terms and infinite precision, this is an analogue of the Baker-Campbell-Hausdorff formula: it defines an associative product on the completed free pre-Lie algebra.

INPUT:

  • x, y – two elements

  • n – integer; the maximal width of corollas

  • N – integer (default: 10); truncation order

EXAMPLES:

In the free pre-Lie algebra with one generator:

sage: PL = algebras.FreePreLie(QQ)
sage: a = PL.gen(0)
sage: PL.group_product(a, a, 3, 3)
B[[]] + B[[[]]] + 1/2*B[[[], []]]
>>> from sage.all import *
>>> PL = algebras.FreePreLie(QQ)
>>> a = PL.gen(Integer(0))
>>> PL.group_product(a, a, Integer(3), Integer(3))
B[[]] + B[[[]]] + 1/2*B[[[], []]]

In the free pre-Lie algebra with several generators:

sage: PL = algebras.FreePreLie(QQ,'@O')
sage: a, b = PL.gens()
sage: PL.group_product(a, b, 3, 3)
B[@[]] + B[@[O[]]] + 1/2*B[@[O[], O[]]]
sage: PL.group_product(a, b, 3, 10)
B[@[]] + B[@[O[]]] + 1/2*B[@[O[], O[]]] + 1/6*B[@[O[], O[], O[]]]
>>> from sage.all import *
>>> PL = algebras.FreePreLie(QQ,'@O')
>>> a, b = PL.gens()
>>> PL.group_product(a, b, Integer(3), Integer(3))
B[@[]] + B[@[O[]]] + 1/2*B[@[O[], O[]]]
>>> PL.group_product(a, b, Integer(3), Integer(10))
B[@[]] + B[@[O[]]] + 1/2*B[@[O[], O[]]] + 1/6*B[@[O[], O[], O[]]]
nap_product()[source]#

Return the NAP product.

EXAMPLES:

sage: A = algebras.FreePreLie(QQ, None)
sage: RT = A.basis().keys()
sage: x = A(RT([RT([])]))
sage: A.nap_product(x, x)
B[[[], [[]]]]
>>> from sage.all import *
>>> A = algebras.FreePreLie(QQ, None)
>>> RT = A.basis().keys()
>>> x = A(RT([RT([])]))
>>> A.nap_product(x, x)
B[[[], [[]]]]
nap_product_on_basis(x, y)[source]#

Return the NAP product of two trees.

This is the grafting of the root of \(y\) over the root of \(x\). The root of the resulting tree is the root of \(x\).

See also

nap_product()

EXAMPLES:

sage: A = algebras.FreePreLie(QQ, None)
sage: RT = A.basis().keys()
sage: x = RT([RT([])])
sage: A.nap_product_on_basis(x, x)
B[[[], [[]]]]
>>> from sage.all import *
>>> A = algebras.FreePreLie(QQ, None)
>>> RT = A.basis().keys()
>>> x = RT([RT([])])
>>> A.nap_product_on_basis(x, x)
B[[[], [[]]]]
pre_Lie_product()[source]#

Return the pre-Lie product.

EXAMPLES:

sage: A = algebras.FreePreLie(QQ, None)
sage: RT = A.basis().keys()
sage: x = A(RT([RT([])]))
sage: A.pre_Lie_product(x, x)
B[[[[[]]]]] + B[[[], [[]]]]
>>> from sage.all import *
>>> A = algebras.FreePreLie(QQ, None)
>>> RT = A.basis().keys()
>>> x = A(RT([RT([])]))
>>> A.pre_Lie_product(x, x)
B[[[[[]]]]] + B[[[], [[]]]]
pre_Lie_product_on_basis(x, y)[source]#

Return the pre-Lie product of two trees.

This is the sum over all graftings of the root of \(y\) over a vertex of \(x\). The root of the resulting trees is the root of \(x\).

EXAMPLES:

sage: A = algebras.FreePreLie(QQ, None)
sage: RT = A.basis().keys()
sage: x = RT([RT([])])
sage: A.product_on_basis(x, x)
B[[[[[]]]]] + B[[[], [[]]]]
>>> from sage.all import *
>>> A = algebras.FreePreLie(QQ, None)
>>> RT = A.basis().keys()
>>> x = RT([RT([])])
>>> A.product_on_basis(x, x)
B[[[[[]]]]] + B[[[], [[]]]]
product_on_basis(x, y)[source]#

Return the pre-Lie product of two trees.

This is the sum over all graftings of the root of \(y\) over a vertex of \(x\). The root of the resulting trees is the root of \(x\).

EXAMPLES:

sage: A = algebras.FreePreLie(QQ, None)
sage: RT = A.basis().keys()
sage: x = RT([RT([])])
sage: A.product_on_basis(x, x)
B[[[[[]]]]] + B[[[], [[]]]]
>>> from sage.all import *
>>> A = algebras.FreePreLie(QQ, None)
>>> RT = A.basis().keys()
>>> x = RT([RT([])])
>>> A.product_on_basis(x, x)
B[[[[[]]]]] + B[[[], [[]]]]
some_elements()[source]#

Return some elements of the free pre-Lie algebra.

EXAMPLES:

sage: A = algebras.FreePreLie(QQ, None)
sage: A.some_elements()
[B[[]], B[[[]]], B[[[[[]]]]] + B[[[], [[]]]], B[[[[]]]] + B[[[], []]], B[[[]]]]
>>> from sage.all import *
>>> A = algebras.FreePreLie(QQ, None)
>>> A.some_elements()
[B[[]], B[[[]]], B[[[[[]]]]] + B[[[], [[]]]], B[[[[]]]] + B[[[], []]], B[[[]]]]

With several generators:

sage: A = algebras.FreePreLie(QQ, 'xy')
sage: A.some_elements()
[B[x[]],
 B[x[x[]]],
 B[x[x[x[x[]]]]] + B[x[x[], x[x[]]]],
 B[x[x[x[]]]] + B[x[x[], x[]]],
 B[x[x[y[]]]] + B[x[x[], y[]]]]
>>> from sage.all import *
>>> A = algebras.FreePreLie(QQ, 'xy')
>>> A.some_elements()
[B[x[]],
 B[x[x[]]],
 B[x[x[x[x[]]]]] + B[x[x[], x[x[]]]],
 B[x[x[x[]]]] + B[x[x[], x[]]],
 B[x[x[y[]]]] + B[x[x[], y[]]]]
variable_names()[source]#

Return the names of the variables.

EXAMPLES:

sage: R = algebras.FreePreLie(QQ, 'xy')
sage: R.variable_names()
{'x', 'y'}

sage: R = algebras.FreePreLie(QQ, None)
sage: R.variable_names()
{'o'}
>>> from sage.all import *
>>> R = algebras.FreePreLie(QQ, 'xy')
>>> R.variable_names()
{'x', 'y'}

>>> R = algebras.FreePreLie(QQ, None)
>>> R.variable_names()
{'o'}
class sage.combinat.free_prelie_algebra.PreLieFunctor(vars)[source]#

Bases: ConstructionFunctor

A constructor for pre-Lie algebras.

EXAMPLES:

sage: P = algebras.FreePreLie(ZZ, 'x,y')
sage: x,y = P.gens()
sage: F = P.construction()[0]; F
PreLie[x,y]

sage: A = GF(5)['a,b']
sage: a, b = A.gens()
sage: F(A)
Free PreLie algebra on 2 generators ['x', 'y'] over Multivariate Polynomial Ring in a, b over Finite Field of size 5

sage: f = A.hom([a+b,a-b],A)
sage: F(f)
Generic endomorphism of Free PreLie algebra on 2 generators ['x', 'y']
over Multivariate Polynomial Ring in a, b over Finite Field of size 5

sage: F(f)(a * F(A)(x))
(a+b)*B[x[]]
>>> from sage.all import *
>>> P = algebras.FreePreLie(ZZ, 'x,y')
>>> x,y = P.gens()
>>> F = P.construction()[Integer(0)]; F
PreLie[x,y]

>>> A = GF(Integer(5))['a,b']
>>> a, b = A.gens()
>>> F(A)
Free PreLie algebra on 2 generators ['x', 'y'] over Multivariate Polynomial Ring in a, b over Finite Field of size 5

>>> f = A.hom([a+b,a-b],A)
>>> F(f)
Generic endomorphism of Free PreLie algebra on 2 generators ['x', 'y']
over Multivariate Polynomial Ring in a, b over Finite Field of size 5

>>> F(f)(a * F(A)(x))
(a+b)*B[x[]]
merge(other)[source]#

Merge self with another construction functor, or return None.

EXAMPLES:

sage: F = sage.combinat.free_prelie_algebra.PreLieFunctor(['x','y'])
sage: G = sage.combinat.free_prelie_algebra.PreLieFunctor(['t'])
sage: F.merge(G)
PreLie[x,y,t]
sage: F.merge(F)
PreLie[x,y]
>>> from sage.all import *
>>> F = sage.combinat.free_prelie_algebra.PreLieFunctor(['x','y'])
>>> G = sage.combinat.free_prelie_algebra.PreLieFunctor(['t'])
>>> F.merge(G)
PreLie[x,y,t]
>>> F.merge(F)
PreLie[x,y]

Now some actual use cases:

sage: R = algebras.FreePreLie(ZZ, 'xyz')
sage: x,y,z = R.gens()
sage: 1/2 * x
1/2*B[x[]]
sage: parent(1/2 * x)
Free PreLie algebra on 3 generators ['x', 'y', 'z'] over Rational Field

sage: S = algebras.FreePreLie(QQ, 'zt')
sage: z,t = S.gens()
sage: x + t
B[t[]] + B[x[]]
sage: parent(x + t)
Free PreLie algebra on 4 generators ['z', 't', 'x', 'y'] over Rational Field
>>> from sage.all import *
>>> R = algebras.FreePreLie(ZZ, 'xyz')
>>> x,y,z = R.gens()
>>> Integer(1)/Integer(2) * x
1/2*B[x[]]
>>> parent(Integer(1)/Integer(2) * x)
Free PreLie algebra on 3 generators ['x', 'y', 'z'] over Rational Field

>>> S = algebras.FreePreLie(QQ, 'zt')
>>> z,t = S.gens()
>>> x + t
B[t[]] + B[x[]]
>>> parent(x + t)
Free PreLie algebra on 4 generators ['z', 't', 'x', 'y'] over Rational Field
rank = 9#
sage.combinat.free_prelie_algebra.corolla_gen(tx, list_ty, labels=True)[source]#

Yield the terms in the corolla with given bottom tree and top trees.

These are the possible terms in the simultaneous grafting of the top trees on vertices of the bottom tree.

INPUT:

  • tx – a tree

  • list_ty – a list of trees

EXAMPLES:

sage: from sage.combinat.free_prelie_algebra import corolla_gen
sage: a = algebras.FreePreLie(QQ).gen(0)
sage: ta = a.support()[0]
sage: list(corolla_gen(ta,[ta],False))
[[[]]]

sage: a, b = algebras.FreePreLie(QQ,'ab').gens()
sage: ta = a.support()[0]
sage: tb = b.support()[0]
sage: ab = (a*b).support()[0]
sage: list(corolla_gen(ta,[tb]))
[a[b[]]]
sage: list(corolla_gen(tb,[ta,ta]))
[b[a[], a[]]]
sage: list(corolla_gen(ab,[ab,ta]))
[a[a[], b[], a[b[]]], a[a[b[]], b[a[]]], a[a[], b[a[b[]]]],
a[b[a[], a[b[]]]]]
>>> from sage.all import *
>>> from sage.combinat.free_prelie_algebra import corolla_gen
>>> a = algebras.FreePreLie(QQ).gen(Integer(0))
>>> ta = a.support()[Integer(0)]
>>> list(corolla_gen(ta,[ta],False))
[[[]]]

>>> a, b = algebras.FreePreLie(QQ,'ab').gens()
>>> ta = a.support()[Integer(0)]
>>> tb = b.support()[Integer(0)]
>>> ab = (a*b).support()[Integer(0)]
>>> list(corolla_gen(ta,[tb]))
[a[b[]]]
>>> list(corolla_gen(tb,[ta,ta]))
[b[a[], a[]]]
>>> list(corolla_gen(ab,[ab,ta]))
[a[a[], b[], a[b[]]], a[a[b[]], b[a[]]], a[a[], b[a[b[]]]],
a[b[a[], a[b[]]]]]
sage.combinat.free_prelie_algebra.tree_from_sortkey(ch, labels=True)[source]#

Transform a list of (valence, label) into a tree and a remainder.

This is like an inverse of the sort_key method.

INPUT:

  • ch – a list of pairs (integer, label)

  • labels – (default True) whether to use labelled trees

OUTPUT:

a pair (tree, remainder of the input)

EXAMPLES:

sage: from sage.combinat.free_prelie_algebra import tree_from_sortkey
sage: a = algebras.FreePreLie(QQ).gen(0)
sage: t = (a*a*a*a).support()
sage: all(tree_from_sortkey(u.sort_key(), False)[0] == u for u in t)
True

sage: a, b = algebras.FreePreLie(QQ,'ab').gens()
sage: t = (a*b*a*b).support()
sage: all(tree_from_sortkey(u.sort_key())[0] == u for u in t)
True
>>> from sage.all import *
>>> from sage.combinat.free_prelie_algebra import tree_from_sortkey
>>> a = algebras.FreePreLie(QQ).gen(Integer(0))
>>> t = (a*a*a*a).support()
>>> all(tree_from_sortkey(u.sort_key(), False)[Integer(0)] == u for u in t)
True

>>> a, b = algebras.FreePreLie(QQ,'ab').gens()
>>> t = (a*b*a*b).support()
>>> all(tree_from_sortkey(u.sort_key())[Integer(0)] == u for u in t)
True