Weighted homogeneous elements of free algebras, in letterplace implementation

AUTHOR:

class sage.algebras.letterplace.free_algebra_element_letterplace.FreeAlgebraElement_letterplace

Bases: sage.structure.element.AlgebraElement

Weighted homogeneous elements of a free associative unital algebra (letterplace implementation)

EXAMPLES:

sage: F.<x,y,z> = FreeAlgebra(QQ, implementation='letterplace')
sage: x+y
x + y
sage: x*y !=y*x
True
sage: I = F*[x*y+y*z,x^2+x*y-y*x-y^2]*F
sage: (y^3).reduce(I)
y*y*y
sage: (y^3).normal_form(I)
y*y*z - y*z*y + y*z*z

Here is an example with nontrivial degree weights:

sage: F.<x,y,z> = FreeAlgebra(QQ, implementation='letterplace', degrees=[2,1,3])
sage: I = F*[x*y-y*x, x^2+2*y*z, (x*y)^2-z^2]*F
sage: x.degree()
2
sage: y.degree()
1
sage: z.degree()
3
sage: (x*y)^3
x*y*x*y*x*y
sage: ((x*y)^3).normal_form(I)
z*z*y*x
sage: ((x*y)^3).degree()
9
degree()

Return the degree of this element.

NOTE:

Generators may have a positive integral degree weight. All elements must be weighted homogeneous.

EXAMPLES:

sage: F.<x,y,z> = FreeAlgebra(QQ, implementation='letterplace')
sage: ((x+y+z)^3).degree()
3
sage: F.<x,y,z> = FreeAlgebra(QQ, implementation='letterplace', degrees=[2,1,3])
sage: ((x*y+z)^3).degree()
9
lc()

The leading coefficient of this free algebra element, as element of the base ring.

EXAMPLES:

sage: F.<x,y,z> = FreeAlgebra(QQ, implementation='letterplace')
sage: ((2*x+3*y-4*z)^2*(5*y+6*z)).lc()
20
sage: ((2*x+3*y-4*z)^2*(5*y+6*z)).lc().parent() is F.base()
True
sage: F.<x,y,z> = FreeAlgebra(QQ, implementation='letterplace', degrees=[2,1,3])
sage: ((2*x*y+z)^2).lc()
4
letterplace_polynomial()

Return the commutative polynomial that is used internally to represent this free algebra element.

EXAMPLES:

sage: F.<x,y,z> = FreeAlgebra(QQ, implementation='letterplace')
sage: ((x+y-z)^2).letterplace_polynomial()
x*x_1 + x*y_1 - x*z_1 + y*x_1 + y*y_1 - y*z_1 - z*x_1 - z*y_1 + z*z_1

If degree weights are used, the letterplace polynomial is homogenized by slack variables:

sage: F.<x,y,z> = FreeAlgebra(QQ, implementation='letterplace', degrees=[2,1,3])
sage: ((x*y+z)^2).letterplace_polynomial()
x*x__1*y_2*x_3*x__4*y_5 + x*x__1*y_2*z_3*x__4*x__5 + z*x__1*x__2*x_3*x__4*y_5 + z*x__1*x__2*z_3*x__4*x__5
lm()

The leading monomial of this free algebra element.

EXAMPLES:

sage: F.<x,y,z> = FreeAlgebra(QQ, implementation='letterplace')
sage: ((2*x+3*y-4*z)^2*(5*y+6*z)).lm()
x*x*y
sage: F.<x,y,z> = FreeAlgebra(QQ, implementation='letterplace', degrees=[2,1,3])
sage: ((2*x*y+z)^2).lm()
x*y*x*y
lm_divides(p)

Tell whether or not the leading monomial of self divides the leading monomial of another element.

NOTE:

A free algebra element \(p\) divides another one \(q\) if there are free algebra elements \(s\) and \(t\) such that \(spt = q\).

EXAMPLES:

sage: F.<x,y,z> = FreeAlgebra(QQ, implementation='letterplace', degrees=[2,1,3])
sage: ((2*x*y+z)^2*z).lm()
x*y*x*y*z
sage: (y*x*y-y^4).lm()
y*x*y
sage: (y*x*y-y^4).lm_divides((2*x*y+z)^2*z)
True
lt()

The leading term (monomial times coefficient) of this free algebra element.

EXAMPLES:

sage: F.<x,y,z> = FreeAlgebra(QQ, implementation='letterplace')
sage: ((2*x+3*y-4*z)^2*(5*y+6*z)).lt()
20*x*x*y
sage: F.<x,y,z> = FreeAlgebra(QQ, implementation='letterplace', degrees=[2,1,3])
sage: ((2*x*y+z)^2).lt()
4*x*y*x*y
normal_form(I)

Return the normal form of this element with respect to a twosided weighted homogeneous ideal.

INPUT:

A twosided homogeneous ideal \(I\) of the parent \(F\) of this element, \(x\).

OUTPUT:

The normal form of \(x\) wrt. \(I\).

NOTE:

The normal form is computed by reduction with respect to a Groebnerbasis of \(I\) with degree bound \(deg(x)\).

EXAMPLES:

sage: F.<x,y,z> = FreeAlgebra(QQ, implementation='letterplace')
sage: I = F*[x*y+y*z,x^2+x*y-y*x-y^2]*F
sage: (x^5).normal_form(I)
-y*z*z*z*x - y*z*z*z*y - y*z*z*z*z

We verify two basic properties of normal forms: The difference of an element and its normal form is contained in the ideal, and if two elements of the free algebra differ by an element of the ideal then they have the same normal form:

sage: x^5 - (x^5).normal_form(I) in I
True
sage: (x^5+x*I.0*y*z-3*z^2*I.1*y).normal_form(I) == (x^5).normal_form(I)
True

Here is an example with non-trivial degree weights:

sage: F.<x,y,z> = FreeAlgebra(QQ, implementation='letterplace', degrees=[1,2,3])
sage: I = F*[x*y-y*x+z, y^2+2*x*z, (x*y)^2-z^2]*F
sage: ((x*y)^3).normal_form(I)
z*z*y*x - z*z*z
sage: (x*y)^3-((x*y)^3).normal_form(I) in I
True
sage: ((x*y)^3+2*z*I.0*z+y*I.1*z-x*I.2*y).normal_form(I) == ((x*y)^3).normal_form(I)
True
reduce(G)

Reduce this element by a list of elements or by a twosided weighted homogeneous ideal.

INPUT:

Either a list or tuple of weighted homogeneous elements of the free algebra, or an ideal of the free algebra, or an ideal in the commutative polynomial ring that is currently used to implement the multiplication in the free algebra.

OUTPUT:

The twosided reduction of this element by the argument.

Note

This may not be the normal form of this element, unless the argument is a twosided Groebner basis up to the degree of this element.

EXAMPLES:

sage: F.<x,y,z> = FreeAlgebra(QQ, implementation='letterplace')
sage: I = F*[x*y+y*z,x^2+x*y-y*x-y^2]*F
sage: p = y^2*z*y^2+y*z*y*z*y

We compute the letterplace version of the Groebner basis of \(I\) with degree bound 4:

sage: G = F._reductor_(I.groebner_basis(4).gens(),4)
sage: G.ring() is F.current_ring()
True

Since the element \(p\) is of degree 5, it is no surprise that its reductions with respect to the original generators of \(I\) (of degree 2), or with respect to \(G\) (Groebner basis with degree bound 4), or with respect to the Groebner basis with degree bound 5 (which yields its normal form) are pairwise different:

sage: p.reduce(I)
y*y*z*y*y + y*z*y*z*y
sage: p.reduce(G)
y*y*z*z*y + y*z*y*z*y - y*z*z*y*y + y*z*z*z*y
sage: p.normal_form(I)
y*y*z*z*z + y*z*y*z*z - y*z*z*y*z + y*z*z*z*z
sage: p.reduce(I) != p.reduce(G) != p.normal_form(I) != p.reduce(I)
True
sage.algebras.letterplace.free_algebra_element_letterplace.poly_reduce(ring=None, interruptible=True, attributes=None, *args)

This function is an automatically generated C wrapper around the Singular function ‘NF’.

This wrapper takes care of converting Sage datatypes to Singular datatypes and vice versa. In addition to whatever parameters the underlying Singular function accepts when called, this function also accepts the following keyword parameters:

INPUT:

  • args – a list of arguments

  • ring – a multivariate polynomial ring

  • interruptible – if True pressing Ctrl-C during the execution of this function will interrupt the computation (default: True)

  • attributes – a dictionary of optional Singular attributes assigned to Singular objects (default: None)

If ring is not specified, it is guessed from the given arguments. If this is not possible, then a dummy ring, univariate polynomial ring over QQ, is used.

EXAMPLES:

sage: groebner = sage.libs.singular.function_factory.ff.groebner
sage: P.<x, y> = PolynomialRing(QQ)
sage: I = P.ideal(x^2-y, y+x)
sage: groebner(I)
[x + y, y^2 - y]
sage: triangL = sage.libs.singular.function_factory.ff.triang__lib.triangL
sage: P.<x1, x2> = PolynomialRing(QQ, order='lex')
sage: f1 = 1/2*((x1^2 + 2*x1 - 4)*x2^2 + 2*(x1^2 + x1)*x2 + x1^2)
sage: f2 = 1/2*((x1^2 + 2*x1 + 1)*x2^2 + 2*(x1^2 + x1)*x2 - 4*x1^2)
sage: I = Ideal(Ideal(f1,f2).groebner_basis()[::-1])
sage: triangL(I, attributes={I:{'isSB':1}})
[[x2^4 + 4*x2^3 - 6*x2^2 - 20*x2 + 5, 8*x1 - x2^3 + x2^2 + 13*x2 - 5],
 [x2, x1^2],
 [x2, x1^2],
 [x2, x1^2]]

The Singular documentation for ‘NF’ is given below.

5.1.129 reduce
--------------

`*Syntax:*'
     `reduce (' poly_expression`,' ideal_expression `)'
     `reduce (' poly_expression`,' ideal_expression`,' int_expression
     `)'
     `reduce (' poly_expression`,' poly_expression`,' ideal_expression
     `)'
     `reduce (' vector_expression`,' ideal_expression `)'
     `reduce (' vector_expression`,' ideal_expression`,' int_expression
     `)'
     `reduce (' vector_expression`,' module_expression `)'
     `reduce (' vector_expression`,' module_expression`,'
     int_expression `)'
     `reduce (' vector_expression`,' poly_expression`,'
     module_expression `)'
     `reduce (' ideal_expression`,' ideal_expression `)'
     `reduce (' ideal_expression`,' ideal_expression`,' int_expression
     `)'
     `reduce (' ideal_expression`,' matrix_expression`,'
     ideal_expression `)'
     `reduce (' module_expression`,' ideal_expression `)'
     `reduce (' module_expression`,' ideal_expression`,' int_expression
     `)'
     `reduce (' module_expression`,' module_expression `)'
     `reduce (' module_expression`,' module_expression`,'
     int_expression `)'
     `reduce (' module_expression`,' matrix_expression`,'
     module_expression `)'
     `reduce (' poly/vector/ideal/module`,' ideal/module`,' int`,'
     intvec `)'
     `reduce (' ideal`,' matrix`,' ideal`,' int `)'
     `reduce (' poly`,' poly`,' ideal`,' int `)'
     `reduce (' poly`,' poly`,' ideal`,' int`,' intvec `)'

`*Type:*'
     the type of the first argument

`*Purpose:*'
     reduces a polynomial, vector, ideal  or module to its normal form
     with respect to an ideal or module represented by a standard basis.
     Returns 0 if and only if the polynomial (resp. vector, ideal,
     module) is an element (resp. subideal, submodule) of the ideal
     (resp. module).  The result may have no meaning if the second
     argument is not a standard basis.
     The third (optional) argument of type int modifies the behavior:
        * 0 default

        * 1 consider only the leading term and do no tail reduction.

        * 2 tail reduction:n the local/mixed ordering case: reduce also
          with bad ecart

        * 4 reduce without division, return possibly a non-zero
          constant multiple of the remainder

     If a second argument `u' of type poly or matrix is given, the
     first argument `p' is replaced by `p/u'.  This works only for zero
     dimensional ideals (resp. modules) in the third argument and
     gives, even in a local ring, a reduced normal form which is the
     projection to the quotient by the ideal (resp. module).  One may
     give a degree bound in the fourth argument with respect to a
     weight vector in the fifth argument in order have a finite
     computation.  If some of the weights are zero, the procedure may
     not terminate!

`*Note_*'
     The commands `reduce' and `NF' are synonymous.

`*Example:*'
            ring r1 = 0,(z,y,x),ds;
            poly s1=2x5y+7x2y4+3x2yz3;
            poly s2=1x2y2z2+3z8;
            poly s3=4xy5+2x2y2z3+11x10;
            ideal i=s1,s2,s3;
            ideal j=std(i);
            reduce(3z3yx2+7y4x2+yx5+z12y2x2,j);
          ==> -yx5+2401/81y14x2+2744/81y11x5+392/27y8x8+224/81y5x11+16/81y2x14
            reduce(3z3yx2+7y4x2+yx5+z12y2x2,j,1);
          ==> -yx5+z12y2x2
            // 4 arguments:
            ring rs=0,x,ds;
            // normalform of 1/(1+x) w.r.t. (x3) up to degree 5
            reduce(poly(1),1+x,ideal(x3),5);
          ==> // ** _ is no standard basis
          ==> 1-x+x2

* Menu:

See
* division::
* ideal::
* module::
* poly operations::
* std::
* vector::