The F-Matrix of a Fusion Ring#
- class sage.algebras.fusion_rings.f_matrix.FMatrix(fusion_ring, fusion_label='f', var_prefix='fx', inject_variables=False)[source]#
Bases:
SageObject
An F-matrix for a
FusionRing
.INPUT:
FR
– aFusionRing
fusion_label
– (optional) a string used to label basis elements of theFusionRing
associated toself
(seeFusionRing.fusion_labels()
)var_prefix
– (optional) a string indicating the desired prefix for variables denoting F-symbols to be solvedinject_variables
– (default:False
) a boolean indicating whether to inject variables (FusionRing
basis element labels and F-symbols) into the global namespace
The
FusionRing
or Verlinde algebra is the Grothendieck ring of a modular tensor category [BaKi2001]. Such categories arise in conformal field theory or in the representation theories of affine Lie algebras, or quantum groups at roots of unity. They have applications to low dimensional topology and knot theory, to conformal field theory and to topological quantum computing. TheFusionRing
captures much information about a fusion category, but to complete the picture, the F-matrices or 6j-symbols are needed. For example these are required in order to construct braid group representations. This can be done using theFusionRing
methodFusionRing.get_braid_generators()
, which uses the F-matrix.We only undertake to compute the F-matrix if the
FusionRing
is multiplicity free meaning that the Fusion coefficients \(N^{ij}_k\) are bounded by 1. For Cartan Types \(X_r\) and level \(k\), the multiplicity-free cases are given by the following table.Cartan Type
\(k\)
\(A_1\)
any
\(A_r, r\geq 2\)
\(\leq 2\)
\(B_r, r\geq 2\)
\(\leq 2\)
\(C_2\)
\(\leq 2\)
\(C_r, r\geq 3\)
\(\leq 1\)
\(D_r, r\geq 4\)
\(\leq 2\)
\(G_2, F_4, E_6, E_7\)
\(\leq 2\)
\(E_8\)
\(\leq 3\)
Beyond this limitation, computation of the F-matrix can involve very large systems of equations. A rule of thumb is that this code can compute the F-matrix for systems with \(\leq 14\) simple objects (primary fields) on a machine with 16 GB of memory. (Larger examples can be quite time consuming.)
The
FusionRing
and its methods capture much of the structure of the underlying tensor category. But an important aspect that is not encoded in the fusion ring is the associator, which is a homomorphism \((A\otimes B)\otimes C\to A\otimes(B\otimes C)\) that requires an additional tool, the F-matrix or 6j-symbol. To specify this, we fix a simple object \(D\) and represent the transformation\[\text{Hom}(D, (A\otimes B)\otimes C) \to \text{Hom}(D, A\otimes(B\otimes C))\]by a matrix \(F^{ABC}_D\). This depends on a pair of additional simple objects \(X\) and \(Y\). Indeed, we can get a basis for \(\text{Hom}(D, (A\otimes B)\otimes C)\) indexed by simple objects \(X\) in which the corresponding homomorphism factors through \(X\otimes C\), and similarly \(\text{Hom}(D, A\otimes(B\otimes C))\) has a basis indexed by \(Y\), in which the basis vector factors through \(A\otimes Y\).
See [TTWL2009] for an introduction to this topic, [EGNO2015] Section 4.9 for a precise mathematical definition, and [Bond2007] Section 2.5 and [Ab2022] for discussions of how to compute the F-matrix. In addition to [Bond2007], worked out F-matrices may be found in [RoStWa2009] and [CHW2015].
The F-matrix is only determined up to a gauge. This is a family of embeddings \(C \to A\otimes B\) for simple objects \(A, B, C\) such that \(\text{Hom}(C, A\otimes B)\) is nonzero. Changing the gauge changes the F-matrix though not in a very essential way. By varying the gauge it is possible to make the F-matrices unitary, or it is possible to make them cyclotomic.
Due to the large number of equations we may fail to find a Groebner basis if there are too many variables.
EXAMPLES:
sage: I = FusionRing("E8", 2, conjugate=True) sage: I.fusion_labels(["i0", "p", "s"], inject_variables=True) sage: f = I.get_fmatrix(inject_variables=True); f creating variables fx1..fx14 Defining fx0, fx1, fx2, fx3, fx4, fx5, fx6, fx7, fx8, fx9, fx10, fx11, fx12, fx13 F-Matrix factory for The Fusion Ring of Type E8 and level 2 with Integer Ring coefficients
>>> from sage.all import * >>> I = FusionRing("E8", Integer(2), conjugate=True) >>> I.fusion_labels(["i0", "p", "s"], inject_variables=True) >>> f = I.get_fmatrix(inject_variables=True); f creating variables fx1..fx14 Defining fx0, fx1, fx2, fx3, fx4, fx5, fx6, fx7, fx8, fx9, fx10, fx11, fx12, fx13 F-Matrix factory for The Fusion Ring of Type E8 and level 2 with Integer Ring coefficients
We have injected two sets of variables to the global namespace. We created three variables
i0, p, s
to represent the primary fields (simple elements) of theFusionRing
. Creating theFMatrix
factory also created variablesfx1, fx2, ..., fx14
in order to solve the hexagon and pentagon equations describing the F-matrix. Since we calledFMatrix
with the parameterinject_variables=True
, these have been injected into the global namespace. This is not necessary for the code to work but if you want to run the code experimentally you may want access to these variables.EXAMPLES:
sage: f.fmatrix(s, s, s, s) [fx10 fx11] [fx12 fx13]
>>> from sage.all import * >>> f.fmatrix(s, s, s, s) [fx10 fx11] [fx12 fx13]
The F-matrix has not been computed at this stage, so the F-matrix \(F^{sss}_s\) is filled with variables
fx10
,fx11
,fx12
,fx13
. The task is to solve for these.As explained above The F-matrix \((F^{ABC}_D)_{X, Y}\) two other variables \(X\) and \(Y\). We have methods to tell us (depending on \(A, B, C, D\)) what the possibilities for these are. In this example with \(A=B=C=D=s\) both \(X\) and \(Y\) are allowed to be \(i_0\) or \(s\).
sage: f.f_from(s, s, s, s), f.f_to(s, s, s, s) ([i0, p], [i0, p])
>>> from sage.all import * >>> f.f_from(s, s, s, s), f.f_to(s, s, s, s) ([i0, p], [i0, p])
The last two statments show that the possible values of \(X\) and \(Y\) when \(A = B = C = D = s\) are \(i_0\) and \(p\).
The F-matrix is computed by solving the so-called pentagon and hexagon equations. The pentagon equations reflect the Mac Lane pentagon axiom in the definition of a monoidal category. The hexagon relations reflect the axioms of a braided monoidal category, which are constraints on both the F-matrix and on the R-matrix. Optionally, orthogonality constraints may be imposed to obtain an orthogonal F-matrix.
sage: sorted(f.get_defining_equations("pentagons"))[1:3] [fx9*fx12 - fx2*fx13, fx4*fx11 - fx2*fx13] sage: sorted(f.get_defining_equations("hexagons"))[1:3] [fx6 - 1, fx2 + 1] sage: sorted(f.get_orthogonality_constraints())[1:3] [fx10*fx11 + fx12*fx13, fx10*fx11 + fx12*fx13]
>>> from sage.all import * >>> sorted(f.get_defining_equations("pentagons"))[Integer(1):Integer(3)] [fx9*fx12 - fx2*fx13, fx4*fx11 - fx2*fx13] >>> sorted(f.get_defining_equations("hexagons"))[Integer(1):Integer(3)] [fx6 - 1, fx2 + 1] >>> sorted(f.get_orthogonality_constraints())[Integer(1):Integer(3)] [fx10*fx11 + fx12*fx13, fx10*fx11 + fx12*fx13]
There are two methods available to compute an F-matrix. The first,
find_cyclotomic_solution()
uses only the pentagon and hexagon relations. The second,find_orthogonal_solution()
uses additionally the orthogonality relations. There are some differences that should be kept in mind.find_cyclotomic_solution()
currently works only with smaller examples. For example theFusionRing
for \(G_2\) at level 2 is too large. When it is available, this method produces an F-matrix whose entries are in the same cyclotomic field as the underlyingFusionRing
.sage: f.find_cyclotomic_solution() Setting up hexagons and pentagons... Finding a Groebner basis... Solving... Fixing the gauge... adding equation... fx1 - 1 adding equation... fx11 - 1 Done!
>>> from sage.all import * >>> f.find_cyclotomic_solution() Setting up hexagons and pentagons... Finding a Groebner basis... Solving... Fixing the gauge... adding equation... fx1 - 1 adding equation... fx11 - 1 Done!
We now have access to the values of the F-matrix using the methods
fmatrix()
andfmat()
:sage: f.fmatrix(s, s, s, s) [(-1/2*zeta128^48 + 1/2*zeta128^16) 1] [ 1/2 (1/2*zeta128^48 - 1/2*zeta128^16)] sage: f.fmat(s, s, s, s, p, p) (1/2*zeta128^48 - 1/2*zeta128^16)
>>> from sage.all import * >>> f.fmatrix(s, s, s, s) [(-1/2*zeta128^48 + 1/2*zeta128^16) 1] [ 1/2 (1/2*zeta128^48 - 1/2*zeta128^16)] >>> f.fmat(s, s, s, s, p, p) (1/2*zeta128^48 - 1/2*zeta128^16)
find_orthogonal_solution()
is much more powerful and is capable of handling large cases, sometimes quickly but sometimes (in larger cases) after hours of computation. Its F-matrices are not always in the cyclotomic field that is the base ring of the underlyingFusionRing
, but sometimes in an extension field adjoining some square roots. When this happens, theFusionRing
is modified, adding an attribute_basecoer
that is a coercion from the cyclotomic field to the field containing the F-matrix. The field containing the F-matrix is available throughfield()
.sage: f = FusionRing("B3", 2).get_fmatrix() sage: f.find_orthogonal_solution(verbose=False, checkpoint=True) # not tested (~100 s) sage: all(v in CyclotomicField(56) for v in f.get_fvars().values()) # not tested True sage: f = FusionRing("G2", 2).get_fmatrix() sage: f.find_orthogonal_solution(verbose=False) # long time (~11 s) sage: f.field() # long time Algebraic Field
>>> from sage.all import * >>> f = FusionRing("B3", Integer(2)).get_fmatrix() >>> f.find_orthogonal_solution(verbose=False, checkpoint=True) # not tested (~100 s) >>> all(v in CyclotomicField(Integer(56)) for v in f.get_fvars().values()) # not tested True >>> f = FusionRing("G2", Integer(2)).get_fmatrix() >>> f.find_orthogonal_solution(verbose=False) # long time (~11 s) >>> f.field() # long time Algebraic Field
- FR()[source]#
Return the
FusionRing
associated toself
.EXAMPLES:
sage: f = FusionRing("D3", 1).get_fmatrix() sage: f.FR() The Fusion Ring of Type D3 and level 1 with Integer Ring coefficients
>>> from sage.all import * >>> f = FusionRing("D3", Integer(1)).get_fmatrix() >>> f.FR() The Fusion Ring of Type D3 and level 1 with Integer Ring coefficients
- attempt_number_field_computation()[source]#
Based on the
CartanType
ofself
and data known on March 17, 2021, determine whether to attempt to find aNumberField()
containing all the F-symbols.This method is used by
find_orthogonal_solution()
to determine a field containing all F-symbols. Seefield()
andget_non_cyclotomic_roots()
.For certain
fusion rings
, the number field computation does not terminate in reasonable time. In these cases, we report F-symbols as elements of theQQbar
.EXAMPLES:
sage: f = FusionRing("F4", 2).get_fmatrix() sage: f.attempt_number_field_computation() False sage: f = FusionRing("G2", 1).get_fmatrix() sage: f.attempt_number_field_computation() True
>>> from sage.all import * >>> f = FusionRing("F4", Integer(2)).get_fmatrix() >>> f.attempt_number_field_computation() False >>> f = FusionRing("G2", Integer(1)).get_fmatrix() >>> f.attempt_number_field_computation() True
Note
In certain cases, F-symbols are found in the associated
FusionRing
’s cyclotomic field and aNumberField()
computation is not needed. In these cases this method returnsTrue
but thefind_orthogonal_solution()
solver does not undertake aNumberField()
computation.
- certify_pentagons(use_mp=True, verbose=False)[source]#
Obtain a certificate of satisfaction for the pentagon equations, up to floating-point error.
This method converts the computed F-symbols (available through
get_fvars()
) to native Python floats and then checks whether the pentagon equations are satisfied using floating point arithmetic.When
self.FR().basis()
has many elements, verifying satisfaction of the pentagon relations exactly usingget_defining_equations()
withoption="pentagons"
may take a long time. This method is faster, but it cannot provide mathematical guarantees.EXAMPLES:
sage: f = FusionRing("C3", 1).get_fmatrix() sage: f.find_orthogonal_solution() # long time Computing F-symbols for The Fusion Ring of Type C3 and level 1 with Integer Ring coefficients with 71 variables... Set up 134 hex and orthogonality constraints... Partitioned 134 equations into 17 components of size: [12, 12, 6, 6, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 1, 1, 1] Elimination epoch completed... 10 eqns remain in ideal basis Elimination epoch completed... 0 eqns remain in ideal basis Hex elim step solved for 51 / 71 variables Set up 121 reduced pentagons... Elimination epoch completed... 18 eqns remain in ideal basis Elimination epoch completed... 5 eqns remain in ideal basis Pent elim step solved for 64 / 71 variables Partitioned 5 equations into 1 components of size: [4] Elimination epoch completed... 0 eqns remain in ideal basis Partitioned 6 equations into 6 components of size: [1, 1, 1, 1, 1, 1] Computing appropriate NumberField... sage: f.certify_pentagons() is None # not tested (long time ~1.5s, cypari issue in doctesting framework) True
>>> from sage.all import * >>> f = FusionRing("C3", Integer(1)).get_fmatrix() >>> f.find_orthogonal_solution() # long time Computing F-symbols for The Fusion Ring of Type C3 and level 1 with Integer Ring coefficients with 71 variables... Set up 134 hex and orthogonality constraints... Partitioned 134 equations into 17 components of size: [12, 12, 6, 6, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 1, 1, 1] Elimination epoch completed... 10 eqns remain in ideal basis Elimination epoch completed... 0 eqns remain in ideal basis Hex elim step solved for 51 / 71 variables Set up 121 reduced pentagons... Elimination epoch completed... 18 eqns remain in ideal basis Elimination epoch completed... 5 eqns remain in ideal basis Pent elim step solved for 64 / 71 variables Partitioned 5 equations into 1 components of size: [4] Elimination epoch completed... 0 eqns remain in ideal basis Partitioned 6 equations into 6 components of size: [1, 1, 1, 1, 1, 1] Computing appropriate NumberField... >>> f.certify_pentagons() is None # not tested (long time ~1.5s, cypari issue in doctesting framework) True
- clear_equations()[source]#
Clear the list of equations to be solved.
EXAMPLES:
sage: f = FusionRing("E6", 1).get_fmatrix() sage: f.get_defining_equations('hexagons', output=False) sage: len(f.ideal_basis) 6 sage: f.clear_equations() sage: len(f.ideal_basis) == 0 True
>>> from sage.all import * >>> f = FusionRing("E6", Integer(1)).get_fmatrix() >>> f.get_defining_equations('hexagons', output=False) >>> len(f.ideal_basis) 6 >>> f.clear_equations() >>> len(f.ideal_basis) == Integer(0) True
- clear_vars()[source]#
Reset the F-symbols.
EXAMPLES:
sage: f = FusionRing("C4", 1).get_fmatrix() sage: fvars = f.get_fvars() sage: some_key = sorted(fvars)[0] sage: fvars[some_key] fx0 sage: fvars[some_key] = 1 sage: f.get_fvars()[some_key] 1 sage: f.clear_vars() sage: f.get_fvars()[some_key] fx0
>>> from sage.all import * >>> f = FusionRing("C4", Integer(1)).get_fmatrix() >>> fvars = f.get_fvars() >>> some_key = sorted(fvars)[Integer(0)] >>> fvars[some_key] fx0 >>> fvars[some_key] = Integer(1) >>> f.get_fvars()[some_key] 1 >>> f.clear_vars() >>> f.get_fvars()[some_key] fx0
- equations_graph(eqns=None)[source]#
Construct a graph corresponding to the given equations.
Every node corresponds to a variable and nodes are connected when the corresponding variables appear together in an equation.
INPUT:
eqns
– a list of polynomials
Each polynomial is either an object in the ring returned by
get_poly_ring()
or it is a tuple of pairs representing a polynomial using the internal representation.If no list of equations is passed, the graph is built from the polynomials in
self.ideal_basis
. In this case the method assumes the internal representation of a polynomial as a tuple of pairs is used.This method is crucial to
find_orthogonal_solution()
. The hexagon equations, obtained usingget_defining_equations()
, define a disconnected graph that breaks up into many small components. Thefind_orthogonal_solution()
solver exploits this when undertaking a Groebner basis computation.OUTPUT:
A
Graph
object. If a list of polynomial objects was given, the set of nodes in the output graph is the subset polynomial ring generators appearing in the equations.If the internal representation was used, the set of nodes is the subset of indices corresponding to polynomial ring generators. This option is meant for internal use by the F-matrix solver.
EXAMPLES:
sage: f = FusionRing("A3", 1).get_fmatrix() sage: f.get_poly_ring().ngens() 27 sage: he = f.get_defining_equations('hexagons') sage: graph = f.equations_graph(he) sage: graph.connected_components_sizes() [6, 3, 3, 3, 3, 3, 3, 1, 1, 1]
>>> from sage.all import * >>> f = FusionRing("A3", Integer(1)).get_fmatrix() >>> f.get_poly_ring().ngens() 27 >>> he = f.get_defining_equations('hexagons') >>> graph = f.equations_graph(he) >>> graph.connected_components_sizes() [6, 3, 3, 3, 3, 3, 3, 1, 1, 1]
- f_from(a, b, c, d)[source]#
Return the possible \(x\) such that there are morphisms \(d \to x \otimes c \to (a \otimes b) \otimes c\).
INPUT:
a
,b
,c
,d
– basis elements of the associatedFusionRing
EXAMPLES:
sage: fr = FusionRing("A1", 3, fusion_labels="a", inject_variables=True) sage: f = fr.get_fmatrix() sage: f.fmatrix(a1, a1, a2, a2) [fx6 fx7] [fx8 fx9] sage: f.f_from(a1, a1, a2, a2) [a0, a2] sage: f.f_to(a1, a1, a2, a2) [a1, a3]
>>> from sage.all import * >>> fr = FusionRing("A1", Integer(3), fusion_labels="a", inject_variables=True) >>> f = fr.get_fmatrix() >>> f.fmatrix(a1, a1, a2, a2) [fx6 fx7] [fx8 fx9] >>> f.f_from(a1, a1, a2, a2) [a0, a2] >>> f.f_to(a1, a1, a2, a2) [a1, a3]
- f_to(a, b, c, d)[source]#
Return the possible \(y\) such that there are morphisms \(d \to a \otimes y \to a \otimes (b \otimes c)\).
INPUT:
a
,b
,c
,d
– basis elements of the associatedFusionRing
EXAMPLES:
sage: b22 = FusionRing("B2", 2) sage: b22.fusion_labels("b", inject_variables=True) sage: B = b22.get_fmatrix() sage: B.fmatrix(b2, b4, b2, b4) [fx266 fx267 fx268] [fx269 fx270 fx271] [fx272 fx273 fx274] sage: B.f_from(b2, b4, b2, b4) [b1, b3, b5] sage: B.f_to(b2, b4, b2, b4) [b1, b3, b5]
>>> from sage.all import * >>> b22 = FusionRing("B2", Integer(2)) >>> b22.fusion_labels("b", inject_variables=True) >>> B = b22.get_fmatrix() >>> B.fmatrix(b2, b4, b2, b4) [fx266 fx267 fx268] [fx269 fx270 fx271] [fx272 fx273 fx274] >>> B.f_from(b2, b4, b2, b4) [b1, b3, b5] >>> B.f_to(b2, b4, b2, b4) [b1, b3, b5]
- field()[source]#
Return the base field containing the F-symbols.
When
self
is initialized, the field is set to be the cyclotomic field of theFusionRing
associated toself
.The field may change after running
find_orthogonal_solution()
. At that point, this method could return the associatedFusionRing
’s cyclotomic field, an appropriateNumberField()
that was computed on the fly by the F-matrix solver, or theQQbar
.Depending on the
CartanType
ofself
, the solver may need to compute an extension field containing certain square roots that do not belong to the associatedFusionRing
’s cyclotomic field.In certain cases we revert to
QQbar
because the extension field computation does not seem to terminate. Seeattempt_number_field_computation()
for more details.The method
get_non_cyclotomic_roots()
returns a list of roots defining the extension of theFusionRing
’s cyclotomic field needed to contain all F-symbols.EXAMPLES:
sage: f = FusionRing("G2", 1).get_fmatrix() sage: f.field() Cyclotomic Field of order 60 and degree 16 sage: f.find_orthogonal_solution(verbose=False) sage: f.field() Number Field in a with defining polynomial y^32 - ... - 22*y^2 + 1 sage: phi = f.get_qqbar_embedding() sage: [phi(r).n() for r in f.get_non_cyclotomic_roots()] [-0.786151377757423 - 8.92806368517581e-31*I]
>>> from sage.all import * >>> f = FusionRing("G2", Integer(1)).get_fmatrix() >>> f.field() Cyclotomic Field of order 60 and degree 16 >>> f.find_orthogonal_solution(verbose=False) >>> f.field() Number Field in a with defining polynomial y^32 - ... - 22*y^2 + 1 >>> phi = f.get_qqbar_embedding() >>> [phi(r).n() for r in f.get_non_cyclotomic_roots()] [-0.786151377757423 - 8.92806368517581e-31*I]
Note
Consider using
self.field().optimized_representation()
to obtain an equivalentNumberField()
with a defining polynomial with smaller coefficients, for a more efficient element representation.
- find_cyclotomic_solution(equations=None, algorithm='', verbose=True, output=False)[source]#
Solve the hexagon and pentagon relations to evaluate the F-matrix.
This method (omitting the orthogonality constraints) produces output in the cyclotomic field, but it is very limited in the size of examples it can handle: for example, \(G_2\) at level 2 is too large for this method. You may use
find_orthogonal_solution()
to solve much larger examples.INPUT:
equations
– (optional) a set of equations to be solved; defaults to the hexagon and pentagon equationsalgorithm
– (optional) algorithm to compute Groebner Basisoutput
– (default:False
) output a dictionary of F-matrix values; this may be useful to see but may be omitted since this information will be available afterwards via thefmatrix()
andfmat()
methods.
EXAMPLES:
sage: fr = FusionRing("A2", 1, fusion_labels="a", inject_variables=True) sage: f = fr.get_fmatrix(inject_variables=True) creating variables fx1..fx8 Defining fx0, fx1, fx2, fx3, fx4, fx5, fx6, fx7 sage: f.find_cyclotomic_solution(output=True) Setting up hexagons and pentagons... Finding a Groebner basis... Solving... Fixing the gauge... adding equation... fx4 - 1 Done! {(a2, a2, a2, a0, a1, a1): 1, (a2, a2, a1, a2, a1, a0): 1, (a2, a1, a2, a2, a0, a0): 1, (a2, a1, a1, a1, a0, a2): 1, (a1, a2, a2, a2, a0, a1): 1, (a1, a2, a1, a1, a0, a0): 1, (a1, a1, a2, a1, a2, a0): 1, (a1, a1, a1, a0, a2, a2): 1}
>>> from sage.all import * >>> fr = FusionRing("A2", Integer(1), fusion_labels="a", inject_variables=True) >>> f = fr.get_fmatrix(inject_variables=True) creating variables fx1..fx8 Defining fx0, fx1, fx2, fx3, fx4, fx5, fx6, fx7 >>> f.find_cyclotomic_solution(output=True) Setting up hexagons and pentagons... Finding a Groebner basis... Solving... Fixing the gauge... adding equation... fx4 - 1 Done! {(a2, a2, a2, a0, a1, a1): 1, (a2, a2, a1, a2, a1, a0): 1, (a2, a1, a2, a2, a0, a0): 1, (a2, a1, a1, a1, a0, a2): 1, (a1, a2, a2, a2, a0, a1): 1, (a1, a2, a1, a1, a0, a0): 1, (a1, a1, a2, a1, a2, a0): 1, (a1, a1, a1, a0, a2, a2): 1}
After you successfully run
find_cyclotomic_solution()
you may check the correctness of the F-matrix by runningget_defining_equations()
withoption='hexagons'
andoption='pentagons'
. These should return empty lists of equations.EXAMPLES:
sage: f.get_defining_equations("hexagons") [] sage: f.get_defining_equations("pentagons") []
>>> from sage.all import * >>> f.get_defining_equations("hexagons") [] >>> f.get_defining_equations("pentagons") []
- find_orthogonal_solution(checkpoint=False, save_results='', warm_start='', use_mp=True, verbose=True)[source]#
Solve the the hexagon and pentagon relations, along with orthogonality constraints, to evaluate an orthogonal F-matrix.
INPUT:
checkpoint
– (default:False
) a boolean indicating whether the computation should be checkpointed. Depending on the associatedCartanType
, the computation may take hours to complete. For large examples, checkpoints are recommended. This method supports “warm” starting, so the calculation may be resumed from a checkpoint, using thewarm_start
option.Checkpoints store necessary state in the pickle file
"fmatrix_solver_checkpoint_" + key + ".pickle"
, wherekey
is the result ofget_fr_str()
.Checkpoint pickles are automatically deleted when the solver exits a successful run.
save_results
– (optional) a string indicating the name of a pickle file in which to store calculated F-symbols for later use.If
save_results
is not provided (default), F-matrix results are not stored to file.The F-symbols may be saved to file after running the solver using
save_fvars()
.warm_start
– (optional) a string indicating the name of a pickle file containing checkpointed solver state. This file must have been produced by a previous call to the solver using thecheckpoint
option.If no file name is provided, the calculation begins from scratch.
use_mp
– (default:True
) a boolean indicating whether to use multiprocessing to speed up calculation. The default valueTrue
is highly recommended, since parallel processing yields results much more quickly.verbose
– (default:True
) a boolean indicating whether the solver should print out intermediate progress reports.
OUTPUT:
This method returns
None
. If the solver runs successfully, the results may be accessed through various methods, such asget_fvars()
,fmatrix()
,fmat()
, etc.EXAMPLES:
sage: f = FusionRing("B5", 1).get_fmatrix(fusion_label="b", inject_variables=True) creating variables fx1..fx14 Defining fx0, fx1, fx2, fx3, fx4, fx5, fx6, fx7, fx8, fx9, fx10, fx11, fx12, fx13 sage: f.find_orthogonal_solution() Computing F-symbols for The Fusion Ring of Type B5 and level 1 with Integer Ring coefficients with 14 variables... Set up 25 hex and orthogonality constraints... Partitioned 25 equations into 5 components of size: [4, 3, 3, 3, 1] Elimination epoch completed... 0 eqns remain in ideal basis Hex elim step solved for 10 / 14 variables Set up 7 reduced pentagons... Elimination epoch completed... 0 eqns remain in ideal basis Pent elim step solved for 12 / 14 variables Partitioned 0 equations into 0 components of size: [] Partitioned 2 equations into 2 components of size: [1, 1] sage: f.fmatrix(b2, b2, b2, b2) [ 1/2*zeta80^30 - 1/2*zeta80^10 -1/2*zeta80^30 + 1/2*zeta80^10] [ 1/2*zeta80^30 - 1/2*zeta80^10 1/2*zeta80^30 - 1/2*zeta80^10] sage: f.fmat(b2, b2, b2, b2, b0, b1) -1/2*zeta80^30 + 1/2*zeta80^10
>>> from sage.all import * >>> f = FusionRing("B5", Integer(1)).get_fmatrix(fusion_label="b", inject_variables=True) creating variables fx1..fx14 Defining fx0, fx1, fx2, fx3, fx4, fx5, fx6, fx7, fx8, fx9, fx10, fx11, fx12, fx13 >>> f.find_orthogonal_solution() Computing F-symbols for The Fusion Ring of Type B5 and level 1 with Integer Ring coefficients with 14 variables... Set up 25 hex and orthogonality constraints... Partitioned 25 equations into 5 components of size: [4, 3, 3, 3, 1] Elimination epoch completed... 0 eqns remain in ideal basis Hex elim step solved for 10 / 14 variables Set up 7 reduced pentagons... Elimination epoch completed... 0 eqns remain in ideal basis Pent elim step solved for 12 / 14 variables Partitioned 0 equations into 0 components of size: [] Partitioned 2 equations into 2 components of size: [1, 1] >>> f.fmatrix(b2, b2, b2, b2) [ 1/2*zeta80^30 - 1/2*zeta80^10 -1/2*zeta80^30 + 1/2*zeta80^10] [ 1/2*zeta80^30 - 1/2*zeta80^10 1/2*zeta80^30 - 1/2*zeta80^10] >>> f.fmat(b2, b2, b2, b2, b0, b1) -1/2*zeta80^30 + 1/2*zeta80^10
Every F-matrix \(F^{a, b, c}_d\) is orthogonal and in many cases real. We may use
fmats_are_orthogonal()
andfvars_are_real()
to obtain correctness certificates.EXAMPLES:
sage: f.fmats_are_orthogonal() True
>>> from sage.all import * >>> f.fmats_are_orthogonal() True
In any case, the F-symbols are obtained as elements of the associated
FusionRing
’sCyclotomic field
, a computedNumberField()
, orQQbar
. Currently, the field containing the F-symbols is determined based on theCartanType
associated toself
.See also
- findcases(output=False)[source]#
Return unknown F-matrix entries.
If run with
output=True
, this returns two dictionaries; otherwise it just returns the number of unknown values.EXAMPLES:
sage: f = FusionRing("G2", 1, fusion_labels=("i0", "t")).get_fmatrix() sage: f.findcases() 5 sage: f.findcases(output=True) ({0: (t, t, t, i0, t, t), 1: (t, t, t, t, i0, i0), 2: (t, t, t, t, i0, t), 3: (t, t, t, t, t, i0), 4: (t, t, t, t, t, t)}, {(t, t, t, i0, t, t): fx0, (t, t, t, t, i0, i0): fx1, (t, t, t, t, i0, t): fx2, (t, t, t, t, t, i0): fx3, (t, t, t, t, t, t): fx4})
>>> from sage.all import * >>> f = FusionRing("G2", Integer(1), fusion_labels=("i0", "t")).get_fmatrix() >>> f.findcases() 5 >>> f.findcases(output=True) ({0: (t, t, t, i0, t, t), 1: (t, t, t, t, i0, i0), 2: (t, t, t, t, i0, t), 3: (t, t, t, t, t, i0), 4: (t, t, t, t, t, t)}, {(t, t, t, i0, t, t): fx0, (t, t, t, t, i0, i0): fx1, (t, t, t, t, i0, t): fx2, (t, t, t, t, t, i0): fx3, (t, t, t, t, t, t): fx4})
- fmat(a, b, c, d, x, y, data=True)[source]#
Return the F-Matrix coefficient \((F^{a, b, c}_d)_{x, y}\).
EXAMPLES:
sage: fr = FusionRing("G2", 1, fusion_labels=("i0", "t"), inject_variables=True) sage: f = fr.get_fmatrix() sage: [f.fmat(t, t, t, t, x, y) for x in fr.basis() for y in fr.basis()] [fx1, fx2, fx3, fx4] sage: f.find_cyclotomic_solution(output=True) Setting up hexagons and pentagons... Finding a Groebner basis... Solving... Fixing the gauge... adding equation... fx2 - 1 Done! {(t, t, t, i0, t, t): 1, (t, t, t, t, i0, i0): (-zeta60^14 + zeta60^6 + zeta60^4 - 1), (t, t, t, t, i0, t): 1, (t, t, t, t, t, i0): (-zeta60^14 + zeta60^6 + zeta60^4 - 1), (t, t, t, t, t, t): (zeta60^14 - zeta60^6 - zeta60^4 + 1)} sage: [f.fmat(t, t, t, t, x, y) for x in f._FR.basis() for y in f._FR.basis()] [(-zeta60^14 + zeta60^6 + zeta60^4 - 1), 1, (-zeta60^14 + zeta60^6 + zeta60^4 - 1), (zeta60^14 - zeta60^6 - zeta60^4 + 1)]
>>> from sage.all import * >>> fr = FusionRing("G2", Integer(1), fusion_labels=("i0", "t"), inject_variables=True) >>> f = fr.get_fmatrix() >>> [f.fmat(t, t, t, t, x, y) for x in fr.basis() for y in fr.basis()] [fx1, fx2, fx3, fx4] >>> f.find_cyclotomic_solution(output=True) Setting up hexagons and pentagons... Finding a Groebner basis... Solving... Fixing the gauge... adding equation... fx2 - 1 Done! {(t, t, t, i0, t, t): 1, (t, t, t, t, i0, i0): (-zeta60^14 + zeta60^6 + zeta60^4 - 1), (t, t, t, t, i0, t): 1, (t, t, t, t, t, i0): (-zeta60^14 + zeta60^6 + zeta60^4 - 1), (t, t, t, t, t, t): (zeta60^14 - zeta60^6 - zeta60^4 + 1)} >>> [f.fmat(t, t, t, t, x, y) for x in f._FR.basis() for y in f._FR.basis()] [(-zeta60^14 + zeta60^6 + zeta60^4 - 1), 1, (-zeta60^14 + zeta60^6 + zeta60^4 - 1), (zeta60^14 - zeta60^6 - zeta60^4 + 1)]
- fmatrix(a, b, c, d)[source]#
Return the F-Matrix \(F^{a, b, c}_d\).
INPUT:
a
,b
,c
,d
– basis elements of the associatedFusionRing
EXAMPLES:
sage: fr = FusionRing("A1", 2, fusion_labels="c", inject_variables=True) sage: f = fr.get_fmatrix(new=True) sage: f.fmatrix(c1, c1, c1, c1) [fx0 fx1] [fx2 fx3] sage: f.find_cyclotomic_solution(verbose=False); adding equation... fx4 - 1 adding equation... fx10 - 1 sage: f.f_from(c1, c1, c1, c1) [c0, c2] sage: f.f_to(c1, c1, c1, c1) [c0, c2] sage: f.fmatrix(c1, c1, c1, c1) [ (1/2*zeta32^12 - 1/2*zeta32^4) (-1/2*zeta32^12 + 1/2*zeta32^4)] [ (1/2*zeta32^12 - 1/2*zeta32^4) (1/2*zeta32^12 - 1/2*zeta32^4)]
>>> from sage.all import * >>> fr = FusionRing("A1", Integer(2), fusion_labels="c", inject_variables=True) >>> f = fr.get_fmatrix(new=True) >>> f.fmatrix(c1, c1, c1, c1) [fx0 fx1] [fx2 fx3] >>> f.find_cyclotomic_solution(verbose=False); adding equation... fx4 - 1 adding equation... fx10 - 1 >>> f.f_from(c1, c1, c1, c1) [c0, c2] >>> f.f_to(c1, c1, c1, c1) [c0, c2] >>> f.fmatrix(c1, c1, c1, c1) [ (1/2*zeta32^12 - 1/2*zeta32^4) (-1/2*zeta32^12 + 1/2*zeta32^4)] [ (1/2*zeta32^12 - 1/2*zeta32^4) (1/2*zeta32^12 - 1/2*zeta32^4)]
- fmats_are_orthogonal()[source]#
Verify that all F-matrices are orthogonal.
This method should always return
True
when called after runningfind_orthogonal_solution()
.EXAMPLES:
sage: f = FusionRing("D4", 1).get_fmatrix() sage: f.find_orthogonal_solution(verbose=False) sage: f.fmats_are_orthogonal() True
>>> from sage.all import * >>> f = FusionRing("D4", Integer(1)).get_fmatrix() >>> f.find_orthogonal_solution(verbose=False) >>> f.fmats_are_orthogonal() True
- fvars_are_real()[source]#
Test whether all F-symbols are real.
EXAMPLES:
sage: f = FusionRing("A1", 3).get_fmatrix() sage: f.find_orthogonal_solution(verbose=False) # long time sage: f.fvars_are_real() # not tested (cypari issue in doctesting framework) True
>>> from sage.all import * >>> f = FusionRing("A1", Integer(3)).get_fmatrix() >>> f.find_orthogonal_solution(verbose=False) # long time >>> f.fvars_are_real() # not tested (cypari issue in doctesting framework) True
- get_coerce_map_from_fr_cyclotomic_field()[source]#
Return a coercion map from the associated
FusionRing
’s cyclotomic field into the base field containing all F-symbols (this could be theFusionRing
’sCyclotomic field
, aNumberField()
, orQQbar
).EXAMPLES:
sage: f = FusionRing("G2", 1).get_fmatrix() sage: f.find_orthogonal_solution(verbose=False) sage: f.FR().field() Cyclotomic Field of order 60 and degree 16 sage: f.field() Number Field in a with defining polynomial y^32 - ... - 22*y^2 + 1 sage: phi = f.get_coerce_map_from_fr_cyclotomic_field() sage: phi.domain() == f.FR().field() True sage: phi.codomain() == f.field() True
>>> from sage.all import * >>> f = FusionRing("G2", Integer(1)).get_fmatrix() >>> f.find_orthogonal_solution(verbose=False) >>> f.FR().field() Cyclotomic Field of order 60 and degree 16 >>> f.field() Number Field in a with defining polynomial y^32 - ... - 22*y^2 + 1 >>> phi = f.get_coerce_map_from_fr_cyclotomic_field() >>> phi.domain() == f.FR().field() True >>> phi.codomain() == f.field() True
When F-symbols are computed as elements of the associated
FusionRing
’s baseCyclotomic field
, we haveself.field() == self.FR().field()
and this returns the identity map onself.field()
.sage: f = FusionRing("A2", 1).get_fmatrix() sage: f.find_orthogonal_solution(verbose=False) sage: phi = f.get_coerce_map_from_fr_cyclotomic_field() sage: f.field() Cyclotomic Field of order 48 and degree 16 sage: f.field() == f.FR().field() True sage: phi.domain() == f.field() True sage: phi.is_identity() True
>>> from sage.all import * >>> f = FusionRing("A2", Integer(1)).get_fmatrix() >>> f.find_orthogonal_solution(verbose=False) >>> phi = f.get_coerce_map_from_fr_cyclotomic_field() >>> f.field() Cyclotomic Field of order 48 and degree 16 >>> f.field() == f.FR().field() True >>> phi.domain() == f.field() True >>> phi.is_identity() True
- get_defining_equations(option, output=True)[source]#
Get the equations defining the ideal generated by the hexagon or pentagon relations.
INPUT:
option
– a string determining equations to be set up:'hexagons'
– get equations imposed on the F-matrix by the hexagon relations in the definition of a braided category'pentagons'
– get equations imposed on the F-matrix by the pentagon relations in the definition of a monoidal category
output
– (default:True
) a boolean indicating whether results should be returned, where the equations will be polynomials. Otherwise, the constraints are appended toself.ideal_basis
. Constraints are stored in the internal tuple representation. Theoutput=False
option is meant only for internal use by the F-matrix solver. When computing the hexagon equations with theoutput=False
option, the initial state of the F-symbols is used.
Note
To set up the defining equations using parallel processing, use
start_worker_pool()
to initialize multiple processes before calling this method.EXAMPLES:
sage: f = FusionRing("B2", 1).get_fmatrix() sage: sorted(f.get_defining_equations('hexagons')) [fx7 + 1, fx6 - 1, fx2 + 1, fx0 - 1, fx11*fx12 + (-zeta32^8)*fx13^2 + (zeta32^12)*fx13, fx10*fx12 + (-zeta32^8)*fx12*fx13 + (zeta32^4)*fx12, fx10*fx11 + (-zeta32^8)*fx11*fx13 + (zeta32^4)*fx11, fx10^2 + (-zeta32^8)*fx11*fx12 + (-zeta32^12)*fx10, fx4*fx9 + fx7, fx3*fx8 - fx6, fx1*fx5 + fx2] sage: pe = f.get_defining_equations('pentagons') sage: len(pe) 33
>>> from sage.all import * >>> f = FusionRing("B2", Integer(1)).get_fmatrix() >>> sorted(f.get_defining_equations('hexagons')) [fx7 + 1, fx6 - 1, fx2 + 1, fx0 - 1, fx11*fx12 + (-zeta32^8)*fx13^2 + (zeta32^12)*fx13, fx10*fx12 + (-zeta32^8)*fx12*fx13 + (zeta32^4)*fx12, fx10*fx11 + (-zeta32^8)*fx11*fx13 + (zeta32^4)*fx11, fx10^2 + (-zeta32^8)*fx11*fx12 + (-zeta32^12)*fx10, fx4*fx9 + fx7, fx3*fx8 - fx6, fx1*fx5 + fx2] >>> pe = f.get_defining_equations('pentagons') >>> len(pe) 33
- get_fr_str()[source]#
Auto-generate an identifying key for saving results.
EXAMPLES:
sage: f = FusionRing("B3", 1).get_fmatrix() sage: f.get_fr_str() 'B31'
>>> from sage.all import * >>> f = FusionRing("B3", Integer(1)).get_fmatrix() >>> f.get_fr_str() 'B31'
- get_fvars()[source]#
Return a dictionary of F-symbols.
The keys are sextuples \((a, b, c, d, x, y)\) of basis elements of
self.FR()
and the values are the corresponding F-symbols \((F^{a, b, c}_d)_{xy}\).These values reflect the current state of a solver’s computation.
EXAMPLES:
sage: f = FusionRing("A2", 1).get_fmatrix(inject_variables=True) creating variables fx1..fx8 Defining fx0, fx1, fx2, fx3, fx4, fx5, fx6, fx7 sage: f.get_fvars()[(f1, f1, f1, f0, f2, f2)] fx0 sage: f.find_orthogonal_solution(verbose=False) sage: f.get_fvars()[(f1, f1, f1, f0, f2, f2)] 1
>>> from sage.all import * >>> f = FusionRing("A2", Integer(1)).get_fmatrix(inject_variables=True) creating variables fx1..fx8 Defining fx0, fx1, fx2, fx3, fx4, fx5, fx6, fx7 >>> f.get_fvars()[(f1, f1, f1, f0, f2, f2)] fx0 >>> f.find_orthogonal_solution(verbose=False) >>> f.get_fvars()[(f1, f1, f1, f0, f2, f2)] 1
- get_fvars_by_size(n, indices=False)[source]#
Return the set of F-symbols that are entries of an \(n \times n\) matrix \(F^{a, b, c}_d\).
INPUT:
\(n\) – a positive integer
indices
– boolean (default:False
)
If
indices
isFalse
(default), this method returns a set of sextuples \((a, b, c, d, x, y)\) identifying the corresponding F-symbol. Each sextuple is a key in the dictionary returned byget_fvars()
.Otherwise the method returns a list of integer indices that internally identify the F-symbols. The
indices=True
option is meant for internal use.EXAMPLES:
sage: f = FusionRing("A2", 2).get_fmatrix(inject_variables=True) creating variables fx1..fx287 Defining fx0, ..., fx286 sage: f.largest_fmat_size() 2 sage: f.get_fvars_by_size(2) {(f2, f2, f2, f4, f1, f1), (f2, f2, f2, f4, f1, f5), ... (f4, f4, f4, f4, f4, f0), (f4, f4, f4, f4, f4, f4)}
>>> from sage.all import * >>> f = FusionRing("A2", Integer(2)).get_fmatrix(inject_variables=True) creating variables fx1..fx287 Defining fx0, ..., fx286 >>> f.largest_fmat_size() 2 >>> f.get_fvars_by_size(Integer(2)) {(f2, f2, f2, f4, f1, f1), (f2, f2, f2, f4, f1, f5), ... (f4, f4, f4, f4, f4, f0), (f4, f4, f4, f4, f4, f4)}
- get_fvars_in_alg_field()[source]#
Return F-symbols as elements of the
QQbar
.This method uses the embedding defined by
get_qqbar_embedding()
to coerce F-symbols intoQQbar
.EXAMPLES:
sage: fr = FusionRing("G2", 1) sage: f = fr.get_fmatrix(fusion_label="g", inject_variables=True, new=True) creating variables fx1..fx5 Defining fx0, fx1, fx2, fx3, fx4 sage: f.find_orthogonal_solution(verbose=False) sage: f.field() Number Field in a with defining polynomial y^32 - ... - 22*y^2 + 1 sage: f.get_fvars_in_alg_field() {(g1, g1, g1, g0, g1, g1): 1, (g1, g1, g1, g1, g0, g0): 0.61803399? + 0.?e-8*I, (g1, g1, g1, g1, g0, g1): -0.7861514? + 0.?e-8*I, (g1, g1, g1, g1, g1, g0): -0.7861514? + 0.?e-8*I, (g1, g1, g1, g1, g1, g1): -0.61803399? + 0.?e-8*I}
>>> from sage.all import * >>> fr = FusionRing("G2", Integer(1)) >>> f = fr.get_fmatrix(fusion_label="g", inject_variables=True, new=True) creating variables fx1..fx5 Defining fx0, fx1, fx2, fx3, fx4 >>> f.find_orthogonal_solution(verbose=False) >>> f.field() Number Field in a with defining polynomial y^32 - ... - 22*y^2 + 1 >>> f.get_fvars_in_alg_field() {(g1, g1, g1, g0, g1, g1): 1, (g1, g1, g1, g1, g0, g0): 0.61803399? + 0.?e-8*I, (g1, g1, g1, g1, g0, g1): -0.7861514? + 0.?e-8*I, (g1, g1, g1, g1, g1, g0): -0.7861514? + 0.?e-8*I, (g1, g1, g1, g1, g1, g1): -0.61803399? + 0.?e-8*I}
- get_non_cyclotomic_roots()[source]#
Return a list of roots that define the extension of the associated
FusionRing
’s baseCyclotomic field
, containing all the F-symbols.OUTPUT:
The list of non-cyclotomic roots is given as a list of elements of the field returned by
field()
.If
self.field() == self.FR().field()
then this method returns an empty list.EXAMPLES:
sage: f = FusionRing("E6", 1).get_fmatrix() sage: f.find_orthogonal_solution(verbose=False) sage: f.field() == f.FR().field() True sage: f.get_non_cyclotomic_roots() [] sage: f = FusionRing("G2", 1).get_fmatrix() sage: f.find_orthogonal_solution(verbose=False) sage: f.field() == f.FR().field() False sage: phi = f.get_qqbar_embedding() sage: [phi(r).n() for r in f.get_non_cyclotomic_roots()] [-0.786151377757423 - 8.92806368517581e-31*I]
>>> from sage.all import * >>> f = FusionRing("E6", Integer(1)).get_fmatrix() >>> f.find_orthogonal_solution(verbose=False) >>> f.field() == f.FR().field() True >>> f.get_non_cyclotomic_roots() [] >>> f = FusionRing("G2", Integer(1)).get_fmatrix() >>> f.find_orthogonal_solution(verbose=False) >>> f.field() == f.FR().field() False >>> phi = f.get_qqbar_embedding() >>> [phi(r).n() for r in f.get_non_cyclotomic_roots()] [-0.786151377757423 - 8.92806368517581e-31*I]
When
self.field()
is aNumberField
, one may useget_qqbar_embedding()
to embed the resulting values intoQQbar
.
- get_orthogonality_constraints(output=True)[source]#
Get equations imposed on the F-matrix by orthogonality.
INPUT:
output
– a boolean
OUTPUT:
If
output=True
, orthogonality constraints are returned as polynomial objects.Otherwise, the constraints are appended to
self.ideal_basis
. They are stored in the internal tuple representation. Theoutput=False
option is meant mostly for internal use by the F-matrix solver.EXAMPLES:
sage: f = FusionRing("B4", 1).get_fmatrix() sage: f.get_orthogonality_constraints() [fx0^2 - 1, fx1^2 - 1, fx2^2 - 1, fx3^2 - 1, fx4^2 - 1, fx5^2 - 1, fx6^2 - 1, fx7^2 - 1, fx8^2 - 1, fx9^2 - 1, fx10^2 + fx12^2 - 1, fx10*fx11 + fx12*fx13, fx10*fx11 + fx12*fx13, fx11^2 + fx13^2 - 1]
>>> from sage.all import * >>> f = FusionRing("B4", Integer(1)).get_fmatrix() >>> f.get_orthogonality_constraints() [fx0^2 - 1, fx1^2 - 1, fx2^2 - 1, fx3^2 - 1, fx4^2 - 1, fx5^2 - 1, fx6^2 - 1, fx7^2 - 1, fx8^2 - 1, fx9^2 - 1, fx10^2 + fx12^2 - 1, fx10*fx11 + fx12*fx13, fx10*fx11 + fx12*fx13, fx11^2 + fx13^2 - 1]
- get_poly_ring()[source]#
Return the polynomial ring whose generators denote the desired F-symbols.
EXAMPLES:
sage: f = FusionRing("B6", 1).get_fmatrix() sage: f.get_poly_ring() Multivariate Polynomial Ring in fx0, ..., fx13 over Cyclotomic Field of order 96 and degree 32
>>> from sage.all import * >>> f = FusionRing("B6", Integer(1)).get_fmatrix() >>> f.get_poly_ring() Multivariate Polynomial Ring in fx0, ..., fx13 over Cyclotomic Field of order 96 and degree 32
- get_qqbar_embedding()[source]#
Return an embedding from the base field containing F-symbols (the associated
FusionRing
’sCyclotomic field
, aNumberField()
, orQQbar
) intoQQbar
.This embedding is useful for getting a better sense for the F-symbols, particularly when they are computed as elements of a
NumberField()
. See alsoget_non_cyclotomic_roots()
.EXAMPLES:
sage: fr = FusionRing("G2", 1) sage: f = fr.get_fmatrix(fusion_label="g", inject_variables=True, new=True) creating variables fx1..fx5 Defining fx0, fx1, fx2, fx3, fx4 sage: f.find_orthogonal_solution() Computing F-symbols for The Fusion Ring of Type G2 and level 1 with Integer Ring coefficients with 5 variables... Set up 10 hex and orthogonality constraints... Partitioned 10 equations into 2 components of size: [4, 1] Elimination epoch completed... 0 eqns remain in ideal basis Hex elim step solved for 4 / 5 variables Set up 0 reduced pentagons... Pent elim step solved for 4 / 5 variables Partitioned 0 equations into 0 components of size: [] Partitioned 1 equations into 1 components of size: [1] Computing appropriate NumberField... sage: phi = f.get_qqbar_embedding() sage: phi(f.fmat(g1, g1, g1, g1, g1, g1)).n() -0.618033988749895 + 1.46674215951686e-29*I
>>> from sage.all import * >>> fr = FusionRing("G2", Integer(1)) >>> f = fr.get_fmatrix(fusion_label="g", inject_variables=True, new=True) creating variables fx1..fx5 Defining fx0, fx1, fx2, fx3, fx4 >>> f.find_orthogonal_solution() Computing F-symbols for The Fusion Ring of Type G2 and level 1 with Integer Ring coefficients with 5 variables... Set up 10 hex and orthogonality constraints... Partitioned 10 equations into 2 components of size: [4, 1] Elimination epoch completed... 0 eqns remain in ideal basis Hex elim step solved for 4 / 5 variables Set up 0 reduced pentagons... Pent elim step solved for 4 / 5 variables Partitioned 0 equations into 0 components of size: [] Partitioned 1 equations into 1 components of size: [1] Computing appropriate NumberField... >>> phi = f.get_qqbar_embedding() >>> phi(f.fmat(g1, g1, g1, g1, g1, g1)).n() -0.618033988749895 + 1.46674215951686e-29*I
- get_radical_expression()[source]#
Return a radical expression of F-symbols.
EXAMPLES:
sage: f = FusionRing("G2", 1).get_fmatrix() sage: f.FR().fusion_labels("g", inject_variables=True) sage: f.find_orthogonal_solution(verbose=False) sage: radical_fvars = f.get_radical_expression() # long time (~1.5s) sage: radical_fvars[g1, g1, g1, g1, g1, g0] # long time -sqrt(1/2*sqrt(5) - 1/2)
>>> from sage.all import * >>> f = FusionRing("G2", Integer(1)).get_fmatrix() >>> f.FR().fusion_labels("g", inject_variables=True) >>> f.find_orthogonal_solution(verbose=False) >>> radical_fvars = f.get_radical_expression() # long time (~1.5s) >>> radical_fvars[g1, g1, g1, g1, g1, g0] # long time -sqrt(1/2*sqrt(5) - 1/2)
- largest_fmat_size()[source]#
Get the size of the largest F-matrix \(F^{abc}_d\).
EXAMPLES:
sage: f = FusionRing("B3", 2).get_fmatrix() sage: f.largest_fmat_size() 4
>>> from sage.all import * >>> f = FusionRing("B3", Integer(2)).get_fmatrix() >>> f.largest_fmat_size() 4
- load_fvars(filename)[source]#
Load previously computed F-symbols from a pickle file.
See
save_fvars()
for more information.EXAMPLES:
sage: f = FusionRing("A2", 1).get_fmatrix(new=True) sage: f.find_orthogonal_solution(verbose=False) sage: fvars = f.get_fvars() sage: K = f.field() sage: filename = f.get_fr_str() + "_solver_results.pickle" sage: f.save_fvars(filename) sage: del f sage: f2 = FusionRing("A2", 1).get_fmatrix(new=True) sage: f2.load_fvars(filename) sage: fvars == f2.get_fvars() True sage: K == f2.field() True sage: os.remove(filename)
>>> from sage.all import * >>> f = FusionRing("A2", Integer(1)).get_fmatrix(new=True) >>> f.find_orthogonal_solution(verbose=False) >>> fvars = f.get_fvars() >>> K = f.field() >>> filename = f.get_fr_str() + "_solver_results.pickle" >>> f.save_fvars(filename) >>> del f >>> f2 = FusionRing("A2", Integer(1)).get_fmatrix(new=True) >>> f2.load_fvars(filename) >>> fvars == f2.get_fvars() True >>> K == f2.field() True >>> os.remove(filename)
Note
save_fvars()
. This method does not work with intermediate checkpoint pickles; it only works with pickles containing all F-symbols, i.e. those created bysave_fvars()
and by specifying an optionalsave_results
parameter forfind_orthogonal_solution()
.
- save_fvars(filename)[source]#
Save computed F-symbols for later use.
INPUT:
filename
– a string specifying the name of the pickle file to be used
The current directory is used unless an absolute path to a file in a different directory is provided.
Note
This method should only be used after successfully running one of the solvers, e.g.
find_cyclotomic_solution()
orfind_orthogonal_solution()
.When used in conjunction with
load_fvars()
, this method may be used to restore state of anFMatrix
object at the end of a successful F-matrix solver run.EXAMPLES:
sage: f = FusionRing("A2", 1).get_fmatrix(new=True) sage: f.find_orthogonal_solution(verbose=False) sage: fvars = f.get_fvars() sage: K = f.field() sage: filename = f.get_fr_str() + "_solver_results.pickle" sage: f.save_fvars(filename) sage: del f sage: f2 = FusionRing("A2", 1).get_fmatrix(new=True) sage: f2.load_fvars(filename) sage: fvars == f2.get_fvars() True sage: K == f2.field() True sage: os.remove(filename)
>>> from sage.all import * >>> f = FusionRing("A2", Integer(1)).get_fmatrix(new=True) >>> f.find_orthogonal_solution(verbose=False) >>> fvars = f.get_fvars() >>> K = f.field() >>> filename = f.get_fr_str() + "_solver_results.pickle" >>> f.save_fvars(filename) >>> del f >>> f2 = FusionRing("A2", Integer(1)).get_fmatrix(new=True) >>> f2.load_fvars(filename) >>> fvars == f2.get_fvars() True >>> K == f2.field() True >>> os.remove(filename)
- shutdown_worker_pool()[source]#
Shutdown the given worker pool and dispose of shared memory resources created when the pool was set up using
start_worker_pool()
.Warning
Failure to call this method after using
start_worker_pool()
to create a process pool may result in a memory leak, since shared memory resources outlive the process that created them.EXAMPLES:
sage: f = FusionRing("A1", 3).get_fmatrix(new=True) sage: f.start_worker_pool() sage: he = f.get_defining_equations('hexagons') sage: f.shutdown_worker_pool()
>>> from sage.all import * >>> f = FusionRing("A1", Integer(3)).get_fmatrix(new=True) >>> f.start_worker_pool() >>> he = f.get_defining_equations('hexagons') >>> f.shutdown_worker_pool()
- start_worker_pool(processes=None)[source]#
Initialize a
multiprocessing
worker pool for parallel processing, which may be used e.g. to set up defining equations usingget_defining_equations()
.This method sets
self
’spool
attribute. The worker pool may be used time and again. Upon initialization, each process in the pool attaches to the necessary shared memory resources.When you are done using the worker pool, use
shutdown_worker_pool()
to close the pool and properly dispose of shared memory resources.INPUT:
processes
– an integer indicating the number of workers in the pool; if left unspecified, the number of workers is equals the number of processors available
OUTPUT:
This method returns a boolean indicating whether a worker pool was successfully initialized.
EXAMPLES:
sage: f = FusionRing("G2", 1).get_fmatrix(new=True) sage: f.start_worker_pool() sage: he = f.get_defining_equations('hexagons') sage: sorted(he) [fx0 - 1, fx2*fx3 + (zeta60^14 + zeta60^12 - zeta60^6 - zeta60^4 + 1)*fx4^2 + (zeta60^6)*fx4, fx1*fx3 + (zeta60^14 + zeta60^12 - zeta60^6 - zeta60^4 + 1)*fx3*fx4 + (zeta60^14 - zeta60^4)*fx3, fx1*fx2 + (zeta60^14 + zeta60^12 - zeta60^6 - zeta60^4 + 1)*fx2*fx4 + (zeta60^14 - zeta60^4)*fx2, fx1^2 + (zeta60^14 + zeta60^12 - zeta60^6 - zeta60^4 + 1)*fx2*fx3 + (-zeta60^12)*fx1] sage: pe = f.get_defining_equations('pentagons') sage: f.shutdown_worker_pool()
>>> from sage.all import * >>> f = FusionRing("G2", Integer(1)).get_fmatrix(new=True) >>> f.start_worker_pool() >>> he = f.get_defining_equations('hexagons') >>> sorted(he) [fx0 - 1, fx2*fx3 + (zeta60^14 + zeta60^12 - zeta60^6 - zeta60^4 + 1)*fx4^2 + (zeta60^6)*fx4, fx1*fx3 + (zeta60^14 + zeta60^12 - zeta60^6 - zeta60^4 + 1)*fx3*fx4 + (zeta60^14 - zeta60^4)*fx3, fx1*fx2 + (zeta60^14 + zeta60^12 - zeta60^6 - zeta60^4 + 1)*fx2*fx4 + (zeta60^14 - zeta60^4)*fx2, fx1^2 + (zeta60^14 + zeta60^12 - zeta60^6 - zeta60^4 + 1)*fx2*fx3 + (-zeta60^12)*fx1] >>> pe = f.get_defining_equations('pentagons') >>> f.shutdown_worker_pool()
Warning
This method is needed to initialize the worker pool using the necessary shared memory resources. Simply using the
multiprocessing.Pool
constructor will not work with our class methods.Warning
Failure to call
shutdown_worker_pool()
may result in a memory leak, since shared memory resources outlive the process that created them.