Miscellaneous functions for the Steenrod algebra and its elements¶
AUTHORS:
John H. Palmieri (2008-07-30): initial version (as the file steenrod_algebra_element.py)
John H. Palmieri (2010-06-30): initial version of steenrod_misc.py. Implemented profile functions. Moved most of the methods for elements to the
Element
subclass ofsage.algebras.steenrod.steenrod_algebra.SteenrodAlgebra_generic
.
The main functions here are
get_basis_name()
. This function takes a string as input and attempts to interpret it as the name of a basis for the Steenrod algebra; it returns the canonical name attached to that basis. This allows for the use of synonyms when defining bases, while the resulting algebras will be identical.normalize_profile()
. This function returns the canonical (and hashable) description of any profile function. Seesage.algebras.steenrod.steenrod_algebra
andSteenrodAlgebra
for information on profile functions.functions named
*_mono_to_string
where*
is a basis name (milnor_mono_to_string()
, etc.). These convert tuples representing basis elements to strings, for _repr_ and _latex_ methods.
- sage.algebras.steenrod.steenrod_algebra_misc.arnonA_long_mono_to_string(mono, latex=False, p=2)[source]¶
Alternate string representation of element of Arnon’s A basis.
This is used by the _repr_ and _latex_ methods.
INPUT:
mono
– tuple of pairs of nonnegative integers (m,k) with \(m >= k\)latex
– boolean (default:False
); ifTrue
, output LaTeX string
OUTPUT:
string
– concatenation of strings of the formSq(2^m)
EXAMPLES:
sage: from sage.algebras.steenrod.steenrod_algebra_misc import arnonA_long_mono_to_string sage: arnonA_long_mono_to_string(((1,2),(3,0))) 'Sq^{8} Sq^{4} Sq^{2} Sq^{1}' sage: arnonA_long_mono_to_string(((1,2),(3,0)),latex=True) '\text{Sq}^{8} \text{Sq}^{4} \text{Sq}^{2} \text{Sq}^{1}'
>>> from sage.all import * >>> from sage.algebras.steenrod.steenrod_algebra_misc import arnonA_long_mono_to_string >>> arnonA_long_mono_to_string(((Integer(1),Integer(2)),(Integer(3),Integer(0)))) 'Sq^{8} Sq^{4} Sq^{2} Sq^{1}' >>> arnonA_long_mono_to_string(((Integer(1),Integer(2)),(Integer(3),Integer(0))),latex=True) '\text{Sq}^{8} \text{Sq}^{4} \text{Sq}^{2} \text{Sq}^{1}'
The empty tuple represents the unit element:
sage: arnonA_long_mono_to_string(()) '1'
>>> from sage.all import * >>> arnonA_long_mono_to_string(()) '1'
- sage.algebras.steenrod.steenrod_algebra_misc.arnonA_mono_to_string(mono, latex=False, p=2)[source]¶
String representation of element of Arnon’s A basis.
This is used by the _repr_ and _latex_ methods.
INPUT:
mono
– tuple of pairs of nonnegative integers(m,k) with \(m >= k\)
latex
– boolean (default:False
); ifTrue
, output LaTeX string
OUTPUT: concatenation of strings of the form
X^{m}_{k}
for each pair (m,k)EXAMPLES:
sage: from sage.algebras.steenrod.steenrod_algebra_misc import arnonA_mono_to_string sage: arnonA_mono_to_string(((1,2),(3,0))) 'X^{1}_{2} X^{3}_{0}' sage: arnonA_mono_to_string(((1,2),(3,0)),latex=True) 'X^{1}_{2} X^{3}_{0}'
>>> from sage.all import * >>> from sage.algebras.steenrod.steenrod_algebra_misc import arnonA_mono_to_string >>> arnonA_mono_to_string(((Integer(1),Integer(2)),(Integer(3),Integer(0)))) 'X^{1}_{2} X^{3}_{0}' >>> arnonA_mono_to_string(((Integer(1),Integer(2)),(Integer(3),Integer(0))),latex=True) 'X^{1}_{2} X^{3}_{0}'
The empty tuple represents the unit element:
sage: arnonA_mono_to_string(()) '1'
>>> from sage.all import * >>> arnonA_mono_to_string(()) '1'
- sage.algebras.steenrod.steenrod_algebra_misc.comm_long_mono_to_string(mono, p, latex=False, generic=False)[source]¶
Alternate string representation of element of a commutator basis.
Okay in low dimensions, but gets unwieldy as the dimension increases.
INPUT:
mono
– tuple of pairs of integers (s,t) with \(s >= 0\), \(t > 0\)latex
– boolean (default:False
); ifTrue
, output LaTeX stringgeneric
– whether to format generically, or for the prime 2 (default)
OUTPUT:
string
– concatenation of strings of the forms_{2^s... 2^(s+t-1)}
for each pair (s,t)EXAMPLES:
sage: from sage.algebras.steenrod.steenrod_algebra_misc import comm_long_mono_to_string sage: comm_long_mono_to_string(((1,2),(0,3)), 2) 's_{24} s_{124}' sage: comm_long_mono_to_string(((1,2),(0,3)), 2, latex=True) 's_{24} s_{124}' sage: comm_long_mono_to_string(((1, 4), (((1,2), 1),((0,3), 2))), 5, generic=True) 'Q_{1} Q_{4} s_{5,25} s_{1,5,25}^2' sage: comm_long_mono_to_string(((1, 4), (((1,2), 1),((0,3), 2))), 3, latex=True, generic=True) 'Q_{1} Q_{4} s_{3,9} s_{1,3,9}^{2}'
>>> from sage.all import * >>> from sage.algebras.steenrod.steenrod_algebra_misc import comm_long_mono_to_string >>> comm_long_mono_to_string(((Integer(1),Integer(2)),(Integer(0),Integer(3))), Integer(2)) 's_{24} s_{124}' >>> comm_long_mono_to_string(((Integer(1),Integer(2)),(Integer(0),Integer(3))), Integer(2), latex=True) 's_{24} s_{124}' >>> comm_long_mono_to_string(((Integer(1), Integer(4)), (((Integer(1),Integer(2)), Integer(1)),((Integer(0),Integer(3)), Integer(2)))), Integer(5), generic=True) 'Q_{1} Q_{4} s_{5,25} s_{1,5,25}^2' >>> comm_long_mono_to_string(((Integer(1), Integer(4)), (((Integer(1),Integer(2)), Integer(1)),((Integer(0),Integer(3)), Integer(2)))), Integer(3), latex=True, generic=True) 'Q_{1} Q_{4} s_{3,9} s_{1,3,9}^{2}'
The empty tuple represents the unit element:
sage: comm_long_mono_to_string((), p=2) '1'
>>> from sage.all import * >>> comm_long_mono_to_string((), p=Integer(2)) '1'
- sage.algebras.steenrod.steenrod_algebra_misc.comm_mono_to_string(mono, latex=False, generic=False)[source]¶
String representation of element of a commutator basis.
This is used by the _repr_ and _latex_ methods.
INPUT:
mono
– tuple of pairs of integers (s,t) with \(s >= 0\), \(t > 0\)latex
– boolean (default:False
); ifTrue
, output LaTeX stringgeneric
– whether to format generically, or for the prime 2 (default)
OUTPUT:
string
– concatenation of strings of the formc_{s,t}
for each pair (s,t)EXAMPLES:
sage: from sage.algebras.steenrod.steenrod_algebra_misc import comm_mono_to_string sage: comm_mono_to_string(((1,2),(0,3)), generic=False) 'c_{1,2} c_{0,3}' sage: comm_mono_to_string(((1,2),(0,3)), latex=True) 'c_{1,2} c_{0,3}' sage: comm_mono_to_string(((1, 4), (((1,2), 1),((0,3), 2))), generic=True) 'Q_{1} Q_{4} c_{1,2} c_{0,3}^2' sage: comm_mono_to_string(((1, 4), (((1,2), 1),((0,3), 2))), latex=True, generic=True) 'Q_{1} Q_{4} c_{1,2} c_{0,3}^{2}'
>>> from sage.all import * >>> from sage.algebras.steenrod.steenrod_algebra_misc import comm_mono_to_string >>> comm_mono_to_string(((Integer(1),Integer(2)),(Integer(0),Integer(3))), generic=False) 'c_{1,2} c_{0,3}' >>> comm_mono_to_string(((Integer(1),Integer(2)),(Integer(0),Integer(3))), latex=True) 'c_{1,2} c_{0,3}' >>> comm_mono_to_string(((Integer(1), Integer(4)), (((Integer(1),Integer(2)), Integer(1)),((Integer(0),Integer(3)), Integer(2)))), generic=True) 'Q_{1} Q_{4} c_{1,2} c_{0,3}^2' >>> comm_mono_to_string(((Integer(1), Integer(4)), (((Integer(1),Integer(2)), Integer(1)),((Integer(0),Integer(3)), Integer(2)))), latex=True, generic=True) 'Q_{1} Q_{4} c_{1,2} c_{0,3}^{2}'
The empty tuple represents the unit element:
sage: comm_mono_to_string(()) '1'
>>> from sage.all import * >>> comm_mono_to_string(()) '1'
- sage.algebras.steenrod.steenrod_algebra_misc.convert_perm(m)[source]¶
Convert tuple m of nonnegative integers to a permutation in one-line form.
INPUT:
m
– tuple of nonnegative integers with no repetitions
OUTPUT:
list
– conversion ofm
to a permutation of the set 1,2,…,len(m)If
m=(3,7,4)
, then one can viewm
as representing the permutation of the set \((3,4,7)\) sending 3 to 3, 4 to 7, and 7 to 4. This function convertsm
to the list[1,3,2]
, which represents essentially the same permutation, but of the set \((1,2,3)\). This list can then be passed toPermutation
, and its signature can be computed.EXAMPLES:
sage: sage.algebras.steenrod.steenrod_algebra_misc.convert_perm((3,7,4)) [1, 3, 2] sage: sage.algebras.steenrod.steenrod_algebra_misc.convert_perm((5,0,6,3)) [3, 1, 4, 2]
>>> from sage.all import * >>> sage.algebras.steenrod.steenrod_algebra_misc.convert_perm((Integer(3),Integer(7),Integer(4))) [1, 3, 2] >>> sage.algebras.steenrod.steenrod_algebra_misc.convert_perm((Integer(5),Integer(0),Integer(6),Integer(3))) [3, 1, 4, 2]
- sage.algebras.steenrod.steenrod_algebra_misc.get_basis_name(basis, p, generic=None)[source]¶
Return canonical basis named by string basis at the prime p.
INPUT:
basis
– stringp
– positive prime numbergeneric
– boolean (default: ‘None’)
OUTPUT:
basis_name
– stringSpecify the names of the implemented bases. The input is converted to lower-case, then processed to return the canonical name for the basis.
For the Milnor and Serre-Cartan bases, use the list of synonyms defined by the variables
_steenrod_milnor_basis_names
and_steenrod_serre_cartan_basis_names
. Their canonical names are ‘milnor’ and ‘serre-cartan’, respectively.For the other bases, use pattern-matching rather than a list of synonyms:
Search for ‘wood’ and ‘y’ or ‘wood’ and ‘z’ to get the Wood bases. Canonical names ‘woody’, ‘woodz’.
Search for ‘arnon’ and ‘c’ for the Arnon C basis. Canonical name: ‘arnonc’.
Search for ‘arnon’ (and no ‘c’) for the Arnon A basis. Also see if ‘long’ is present, for the long form of the basis. Canonical names: ‘arnona’, ‘arnona_long’.
Search for ‘wall’ for the Wall basis. Also see if ‘long’ is present. Canonical names: ‘wall’, ‘wall_long’.
Search for ‘pst’ for P^s_t bases, then search for the order type: ‘rlex’, ‘llex’, ‘deg’, ‘revz’. Canonical names: ‘pst_rlex’, ‘pst_llex’, ‘pst_deg’, ‘pst_revz’.
For commutator types, search for ‘comm’, an order type, and also check to see if ‘long’ is present. Canonical names: ‘comm_rlex’, ‘comm_llex’, ‘comm_deg’, ‘comm_revz’, ‘comm_rlex_long’, ‘comm_llex_long’, ‘comm_deg_long’, ‘comm_revz_long’.
EXAMPLES:
sage: from sage.algebras.steenrod.steenrod_algebra_misc import get_basis_name sage: get_basis_name('adem', 2) 'serre-cartan' sage: get_basis_name('milnor', 2) 'milnor' sage: get_basis_name('MiLNoR', 5) 'milnor' sage: get_basis_name('pst-llex', 2) 'pst_llex' sage: get_basis_name('wood_abcdedfg_y', 2) 'woody' sage: get_basis_name('wood', 2) Traceback (most recent call last): ... ValueError: wood is not a recognized basis at the prime 2 sage: get_basis_name('arnon--hello--long', 2) 'arnona_long' sage: get_basis_name('arnona_long', p=5) Traceback (most recent call last): ... ValueError: arnona_long is not a recognized basis at the prime 5 sage: get_basis_name('NOT_A_BASIS', 2) Traceback (most recent call last): ... ValueError: not_a_basis is not a recognized basis at the prime 2 sage: get_basis_name('woody', 2, generic=True) Traceback (most recent call last): ... ValueError: woody is not a recognized basis for the generic Steenrod algebra at the prime 2
>>> from sage.all import * >>> from sage.algebras.steenrod.steenrod_algebra_misc import get_basis_name >>> get_basis_name('adem', Integer(2)) 'serre-cartan' >>> get_basis_name('milnor', Integer(2)) 'milnor' >>> get_basis_name('MiLNoR', Integer(5)) 'milnor' >>> get_basis_name('pst-llex', Integer(2)) 'pst_llex' >>> get_basis_name('wood_abcdedfg_y', Integer(2)) 'woody' >>> get_basis_name('wood', Integer(2)) Traceback (most recent call last): ... ValueError: wood is not a recognized basis at the prime 2 >>> get_basis_name('arnon--hello--long', Integer(2)) 'arnona_long' >>> get_basis_name('arnona_long', p=Integer(5)) Traceback (most recent call last): ... ValueError: arnona_long is not a recognized basis at the prime 5 >>> get_basis_name('NOT_A_BASIS', Integer(2)) Traceback (most recent call last): ... ValueError: not_a_basis is not a recognized basis at the prime 2 >>> get_basis_name('woody', Integer(2), generic=True) Traceback (most recent call last): ... ValueError: woody is not a recognized basis for the generic Steenrod algebra at the prime 2
- sage.algebras.steenrod.steenrod_algebra_misc.is_valid_profile(profile, truncation_type, p=2, generic=None)[source]¶
Return
True
ifprofile
, together withtruncation_type
, is a valid profile at the prime \(p\).INPUT:
profile
– when \(p=2\), a tuple or list of numbers; when \(p\) is odd, a pair of such liststruncation_type
– either 0 or \(\infty\)p
– prime number (default: 2)generic
– boolean (default:None
)
OUTPUT:
True
if the profile function is valid,False
otherwiseSee the documentation for
sage.algebras.steenrod.steenrod_algebra
for descriptions of profile functions and how they correspond to sub-Hopf algebras of the Steenrod algebra. Briefly: at the prime 2, a profile function \(e\) is valid if it satisfies the condition\(e(r) \geq \min( e(r-i) - i, e(i))\) for all \(0 < i < r\).
At odd primes, a pair of profile functions \(e\) and \(k\) are valid if they satisfy
\(e(r) \geq \min( e(r-i) - i, e(i))\) for all \(0 < i < r\).
if \(k(i+j) = 1\), then either \(e(i) \leq j\) or \(k(j) = 1\) for all \(i \geq 1\), \(j \geq 0\).
In this function, profile functions are lists or tuples, and
truncation_type
is appended as the last element of the list \(e\) before testing.EXAMPLES:
\(p=2\):
sage: from sage.algebras.steenrod.steenrod_algebra_misc import is_valid_profile sage: is_valid_profile([3,2,1], 0) True sage: is_valid_profile([3,2,1], Infinity) True sage: is_valid_profile([1,2,3], 0) False sage: is_valid_profile([6,2,0], Infinity) False sage: is_valid_profile([0,3], 0) False sage: is_valid_profile([0,0,4], 0) False sage: is_valid_profile([0,0,0,4,0], 0) True
>>> from sage.all import * >>> from sage.algebras.steenrod.steenrod_algebra_misc import is_valid_profile >>> is_valid_profile([Integer(3),Integer(2),Integer(1)], Integer(0)) True >>> is_valid_profile([Integer(3),Integer(2),Integer(1)], Infinity) True >>> is_valid_profile([Integer(1),Integer(2),Integer(3)], Integer(0)) False >>> is_valid_profile([Integer(6),Integer(2),Integer(0)], Infinity) False >>> is_valid_profile([Integer(0),Integer(3)], Integer(0)) False >>> is_valid_profile([Integer(0),Integer(0),Integer(4)], Integer(0)) False >>> is_valid_profile([Integer(0),Integer(0),Integer(0),Integer(4),Integer(0)], Integer(0)) True
Odd primes:
sage: is_valid_profile(([0,0,0], [2,1,1,1,2,2]), 0, p=3) True sage: is_valid_profile(([1], [2,2]), 0, p=3) True sage: is_valid_profile(([1], [2]), 0, p=7) False sage: is_valid_profile(([1,2,1], []), 0, p=7) True sage: is_valid_profile(([0,0,0], [2,1,1,1,2,2]), 0, p=2, generic=True) True
>>> from sage.all import * >>> is_valid_profile(([Integer(0),Integer(0),Integer(0)], [Integer(2),Integer(1),Integer(1),Integer(1),Integer(2),Integer(2)]), Integer(0), p=Integer(3)) True >>> is_valid_profile(([Integer(1)], [Integer(2),Integer(2)]), Integer(0), p=Integer(3)) True >>> is_valid_profile(([Integer(1)], [Integer(2)]), Integer(0), p=Integer(7)) False >>> is_valid_profile(([Integer(1),Integer(2),Integer(1)], []), Integer(0), p=Integer(7)) True >>> is_valid_profile(([Integer(0),Integer(0),Integer(0)], [Integer(2),Integer(1),Integer(1),Integer(1),Integer(2),Integer(2)]), Integer(0), p=Integer(2), generic=True) True
- sage.algebras.steenrod.steenrod_algebra_misc.milnor_mono_to_string(mono, latex=False, generic=False)[source]¶
String representation of element of the Milnor basis.
This is used by the _repr_ and _latex_ methods.
INPUT:
mono
– if \(generic=False\), tuple of nonnegative integers (a,b,c,…); if \(generic=True\), pair of tuples of nonnegative integers ((e0, e1, e2, …), (r1, r2, …))latex
– boolean (default:False
); ifTrue
, output LaTeX stringgeneric
– whether to format generically, or for the prime 2 (default)
OUTPUT:
rep
– stringThis returns a string like
Sq(a,b,c,...)
when \(generic=False\), or a string likeQ_e0 Q_e1 Q_e2 ... P(r1, r2, ...)
when \(generic=True\).EXAMPLES:
sage: from sage.algebras.steenrod.steenrod_algebra_misc import milnor_mono_to_string sage: milnor_mono_to_string((1,2,3,4)) 'Sq(1,2,3,4)' sage: milnor_mono_to_string((1,2,3,4),latex=True) '\text{Sq}(1,2,3,4)' sage: milnor_mono_to_string(((1,0), (2,3,1)), generic=True) 'Q_{1} Q_{0} P(2,3,1)' sage: milnor_mono_to_string(((1,0), (2,3,1)), latex=True, generic=True) 'Q_{1} Q_{0} \mathcal{P}(2,3,1)'
>>> from sage.all import * >>> from sage.algebras.steenrod.steenrod_algebra_misc import milnor_mono_to_string >>> milnor_mono_to_string((Integer(1),Integer(2),Integer(3),Integer(4))) 'Sq(1,2,3,4)' >>> milnor_mono_to_string((Integer(1),Integer(2),Integer(3),Integer(4)),latex=True) '\text{Sq}(1,2,3,4)' >>> milnor_mono_to_string(((Integer(1),Integer(0)), (Integer(2),Integer(3),Integer(1))), generic=True) 'Q_{1} Q_{0} P(2,3,1)' >>> milnor_mono_to_string(((Integer(1),Integer(0)), (Integer(2),Integer(3),Integer(1))), latex=True, generic=True) 'Q_{1} Q_{0} \mathcal{P}(2,3,1)'
The empty tuple represents the unit element:
sage: milnor_mono_to_string(()) '1' sage: milnor_mono_to_string((), generic=True) '1'
>>> from sage.all import * >>> milnor_mono_to_string(()) '1' >>> milnor_mono_to_string((), generic=True) '1'
- sage.algebras.steenrod.steenrod_algebra_misc.normalize_profile(profile, precision=None, truncation_type='auto', p=2, generic=None)[source]¶
Given a profile function and related data, return it in a standard form, suitable for hashing and caching as data defining a sub-Hopf algebra of the Steenrod algebra.
INPUT:
profile
– a profile function in form specified belowprecision
– integer orNone
(default:None
)truncation_type
– 0 or \(\infty\) or ‘auto’ (default: ‘auto’)p
– prime (default: 2)generic
– boolean (default:None
)
OUTPUT:
a triple
profile, precision, truncation_type
, in standard form as described below.The “standard form” is as follows:
profile
should be a tuple of integers (or \(\infty\)) with no trailing zeroes when \(p=2\), or a pair of such when \(p\) is odd or \(generic\) isTrue
.precision
should be a positive integer.truncation_type
should be 0 or \(\infty\). Furthermore, this must be a valid profile, as determined by the functionis_valid_profile()
. See also the documentation for the modulesage.algebras.steenrod.steenrod_algebra
for information about profile functions.For the inputs: when \(p=2\),
profile
should be a valid profile function, and it may be entered in any of the following forms:a list or tuple, e.g.,
[3,2,1,1]
a function from positive integers to nonnegative integers (and \(\infty\)), e.g.,
lambda n: n+2
. This corresponds to the list[3, 4, 5, ...]
.None
orInfinity
– use this for the profile function for the whole Steenrod algebra. This corresponds to the list[Infinity, Infinity, Infinity, ...]
To make this hashable, it gets turned into a tuple. In the first case it is clear how to do this; also in this case,
precision
is set to be one more than the length of this tuple. In the second case, construct a tuple of length one less thanprecision
(default: 100). In the last case, the empty tuple is returned andprecision
is set to 1.Once a sub-Hopf algebra of the Steenrod algebra has been defined using such a profile function, if the code requires any remaining terms (say, terms after the 100th), then they are given by
truncation_type
if that is 0 or \(\infty\). Iftruncation_type
is ‘auto’, then in the case of a tuple, it gets set to 0, while for the other cases it gets set to \(\infty\).See the examples below.
When \(p\) is odd,
profile
is a pair of “functions”, so it may have the following forms:a pair of lists or tuples, the second of which takes values in the set \(\{1,2\}\), e.g.,
([3,2,1,1], [1,1,2,2,1])
.a pair of functions, one (called \(e\)) from positive integers to nonnegative integers (and \(\infty\)), one (called \(k\)) from nonnegative integers to the set \(\{1,2\}\), e.g.,
(lambda n: n+2, lambda n: 1)
. This corresponds to the pair([3, 4, 5, ...], [1, 1, 1, ...])
.None
orInfinity
– use this for the profile function for the whole Steenrod algebra. This corresponds to the pair([Infinity, Infinity, Infinity, ...], [2, 2, 2, ...])
.
You can also mix and match the first two, passing a pair with first entry a list and second entry a function, for instance. The values of
precision
andtruncation_type
are determined by the first entry.EXAMPLES:
\(p=2\):
sage: from sage.algebras.steenrod.steenrod_algebra_misc import normalize_profile sage: normalize_profile([1,2,1,0,0]) ((1, 2, 1), 0)
>>> from sage.all import * >>> from sage.algebras.steenrod.steenrod_algebra_misc import normalize_profile >>> normalize_profile([Integer(1),Integer(2),Integer(1),Integer(0),Integer(0)]) ((1, 2, 1), 0)
The full mod 2 Steenrod algebra:
sage: normalize_profile(Infinity) ((), +Infinity) sage: normalize_profile(None) ((), +Infinity) sage: normalize_profile(lambda n: Infinity) ((), +Infinity)
>>> from sage.all import * >>> normalize_profile(Infinity) ((), +Infinity) >>> normalize_profile(None) ((), +Infinity) >>> normalize_profile(lambda n: Infinity) ((), +Infinity)
The
precision
argument has no effect when the first argument is a list or tuple:sage: normalize_profile([1,2,1,0,0], precision=12) ((1, 2, 1), 0)
>>> from sage.all import * >>> normalize_profile([Integer(1),Integer(2),Integer(1),Integer(0),Integer(0)], precision=Integer(12)) ((1, 2, 1), 0)
If the first argument is a function, then construct a list of length one less than
precision
, by plugging in the numbers 1, 2, …,precision
- 1:sage: normalize_profile(lambda n: 4-n, precision=4) ((3, 2, 1), +Infinity) sage: normalize_profile(lambda n: 4-n, precision=4, truncation_type=0) ((3, 2, 1), 0)
>>> from sage.all import * >>> normalize_profile(lambda n: Integer(4)-n, precision=Integer(4)) ((3, 2, 1), +Infinity) >>> normalize_profile(lambda n: Integer(4)-n, precision=Integer(4), truncation_type=Integer(0)) ((3, 2, 1), 0)
Negative numbers in profile functions are turned into zeroes:
sage: normalize_profile(lambda n: 4-n, precision=6) ((3, 2, 1, 0, 0), +Infinity)
>>> from sage.all import * >>> normalize_profile(lambda n: Integer(4)-n, precision=Integer(6)) ((3, 2, 1, 0, 0), +Infinity)
If it doesn’t give a valid profile, an error is raised:
sage: normalize_profile(lambda n: 3, precision=4, truncation_type=0) Traceback (most recent call last): ... ValueError: Invalid profile sage: normalize_profile(lambda n: 3, precision=4, truncation_type = Infinity) ((3, 3, 3), +Infinity)
>>> from sage.all import * >>> normalize_profile(lambda n: Integer(3), precision=Integer(4), truncation_type=Integer(0)) Traceback (most recent call last): ... ValueError: Invalid profile >>> normalize_profile(lambda n: Integer(3), precision=Integer(4), truncation_type = Infinity) ((3, 3, 3), +Infinity)
When \(p\) is odd, the behavior is similar:
sage: normalize_profile(([2,1], [2,2,2]), p=13) (((2, 1), (2, 2, 2)), 0)
>>> from sage.all import * >>> normalize_profile(([Integer(2),Integer(1)], [Integer(2),Integer(2),Integer(2)]), p=Integer(13)) (((2, 1), (2, 2, 2)), 0)
The full mod \(p\) Steenrod algebra:
sage: normalize_profile(None, p=7) (((), ()), +Infinity) sage: normalize_profile(Infinity, p=11) (((), ()), +Infinity) sage: normalize_profile((lambda n: Infinity, lambda n: 2), p=17) (((), ()), +Infinity)
>>> from sage.all import * >>> normalize_profile(None, p=Integer(7)) (((), ()), +Infinity) >>> normalize_profile(Infinity, p=Integer(11)) (((), ()), +Infinity) >>> normalize_profile((lambda n: Infinity, lambda n: Integer(2)), p=Integer(17)) (((), ()), +Infinity)
Note that as at the prime 2, the
precision
argument has no effect on a list or tuple in either entry ofprofile
. Iftruncation_type
is ‘auto’, then it gets converted to either0
or+Infinity
depending on the first entry ofprofile
:sage: normalize_profile(([2,1], [2,2,2]), precision=84, p=13) (((2, 1), (2, 2, 2)), 0) sage: normalize_profile((lambda n: 0, lambda n: 2), precision=4, p=11) (((0, 0, 0), ()), +Infinity) sage: normalize_profile((lambda n: 0, (1,1,1,1,1,1,1)), precision=4, p=11) (((0, 0, 0), (1, 1, 1, 1, 1, 1, 1)), +Infinity) sage: normalize_profile(((4,3,2,1), lambda n: 2), precision=6, p=11) (((4, 3, 2, 1), (2, 2, 2, 2, 2)), 0) sage: normalize_profile(((4,3,2,1), lambda n: 1), precision=3, p=11, truncation_type=Infinity) (((4, 3, 2, 1), (1, 1)), +Infinity)
>>> from sage.all import * >>> normalize_profile(([Integer(2),Integer(1)], [Integer(2),Integer(2),Integer(2)]), precision=Integer(84), p=Integer(13)) (((2, 1), (2, 2, 2)), 0) >>> normalize_profile((lambda n: Integer(0), lambda n: Integer(2)), precision=Integer(4), p=Integer(11)) (((0, 0, 0), ()), +Infinity) >>> normalize_profile((lambda n: Integer(0), (Integer(1),Integer(1),Integer(1),Integer(1),Integer(1),Integer(1),Integer(1))), precision=Integer(4), p=Integer(11)) (((0, 0, 0), (1, 1, 1, 1, 1, 1, 1)), +Infinity) >>> normalize_profile(((Integer(4),Integer(3),Integer(2),Integer(1)), lambda n: Integer(2)), precision=Integer(6), p=Integer(11)) (((4, 3, 2, 1), (2, 2, 2, 2, 2)), 0) >>> normalize_profile(((Integer(4),Integer(3),Integer(2),Integer(1)), lambda n: Integer(1)), precision=Integer(3), p=Integer(11), truncation_type=Infinity) (((4, 3, 2, 1), (1, 1)), +Infinity)
As at the prime 2, negative numbers in the first component are converted to zeroes. Numbers in the second component must be either 1 and 2, or else an error is raised:
sage: normalize_profile((lambda n: -n, lambda n: 1), precision=4, p=11) (((0, 0, 0), (1, 1, 1)), +Infinity) sage: normalize_profile([[0,0,0], [1,2,3,2,1]], p=11) Traceback (most recent call last): ... ValueError: Invalid profile
>>> from sage.all import * >>> normalize_profile((lambda n: -n, lambda n: Integer(1)), precision=Integer(4), p=Integer(11)) (((0, 0, 0), (1, 1, 1)), +Infinity) >>> normalize_profile([[Integer(0),Integer(0),Integer(0)], [Integer(1),Integer(2),Integer(3),Integer(2),Integer(1)]], p=Integer(11)) Traceback (most recent call last): ... ValueError: Invalid profile
- sage.algebras.steenrod.steenrod_algebra_misc.pst_mono_to_string(mono, latex=False, generic=False)[source]¶
String representation of element of a \(P^s_t\)-basis.
This is used by the _repr_ and _latex_ methods.
INPUT:
mono
– tuple of pairs of integers (s,t) with \(s >= 0\), \(t > 0\)latex
– boolean (default:False
); ifTrue
, output LaTeX stringgeneric
– whether to format generically, or for the prime 2 (default)
OUTPUT:
string
– concatenation of strings of the formP^{s}_{t}
for each pair (s,t)EXAMPLES:
sage: from sage.algebras.steenrod.steenrod_algebra_misc import pst_mono_to_string sage: pst_mono_to_string(((1,2),(0,3)), generic=False) 'P^{1}_{2} P^{0}_{3}' sage: pst_mono_to_string(((1,2),(0,3)),latex=True, generic=False) 'P^{1}_{2} P^{0}_{3}' sage: pst_mono_to_string(((1,4), (((1,2), 1),((0,3), 2))), generic=True) 'Q_{1} Q_{4} P^{1}_{2} (P^{0}_{3})^2' sage: pst_mono_to_string(((1,4), (((1,2), 1),((0,3), 2))), latex=True, generic=True) 'Q_{1} Q_{4} P^{1}_{2} (P^{0}_{3})^{2}'
>>> from sage.all import * >>> from sage.algebras.steenrod.steenrod_algebra_misc import pst_mono_to_string >>> pst_mono_to_string(((Integer(1),Integer(2)),(Integer(0),Integer(3))), generic=False) 'P^{1}_{2} P^{0}_{3}' >>> pst_mono_to_string(((Integer(1),Integer(2)),(Integer(0),Integer(3))),latex=True, generic=False) 'P^{1}_{2} P^{0}_{3}' >>> pst_mono_to_string(((Integer(1),Integer(4)), (((Integer(1),Integer(2)), Integer(1)),((Integer(0),Integer(3)), Integer(2)))), generic=True) 'Q_{1} Q_{4} P^{1}_{2} (P^{0}_{3})^2' >>> pst_mono_to_string(((Integer(1),Integer(4)), (((Integer(1),Integer(2)), Integer(1)),((Integer(0),Integer(3)), Integer(2)))), latex=True, generic=True) 'Q_{1} Q_{4} P^{1}_{2} (P^{0}_{3})^{2}'
The empty tuple represents the unit element:
sage: pst_mono_to_string(()) '1'
>>> from sage.all import * >>> pst_mono_to_string(()) '1'
- sage.algebras.steenrod.steenrod_algebra_misc.serre_cartan_mono_to_string(mono, latex=False, generic=False)[source]¶
String representation of element of the Serre-Cartan basis.
This is used by the _repr_ and _latex_ methods.
INPUT:
mono
– tuple of positive integers (a,b,c,…) when \(generic=False\), or tuple (e0, n1, e1, n2, …) when \(generic=True\), where each ei is 0 or 1, and each ni is positivelatex
– boolean (default:False
); ifTrue
, output LaTeX stringgeneric
– whether to format generically, or for the prime 2 (default)
OUTPUT:
rep
– stringThis returns a string like
Sq^{a} Sq^{b} Sq^{c} ...
when \(generic=False\), or a string like\beta^{e0} P^{n1} \beta^{e1} P^{n2} ...
when \(generic=True\). is odd.EXAMPLES:
sage: from sage.algebras.steenrod.steenrod_algebra_misc import serre_cartan_mono_to_string sage: serre_cartan_mono_to_string((1,2,3,4)) 'Sq^{1} Sq^{2} Sq^{3} Sq^{4}' sage: serre_cartan_mono_to_string((1,2,3,4),latex=True) '\\text{Sq}^{1} \\text{Sq}^{2} \\text{Sq}^{3} \\text{Sq}^{4}' sage: serre_cartan_mono_to_string((0,5,1,1,0), generic=True) 'P^{5} beta P^{1}' sage: serre_cartan_mono_to_string((0,5,1,1,0), generic=True, latex=True) '\\mathcal{P}^{5} \\beta \\mathcal{P}^{1}'
>>> from sage.all import * >>> from sage.algebras.steenrod.steenrod_algebra_misc import serre_cartan_mono_to_string >>> serre_cartan_mono_to_string((Integer(1),Integer(2),Integer(3),Integer(4))) 'Sq^{1} Sq^{2} Sq^{3} Sq^{4}' >>> serre_cartan_mono_to_string((Integer(1),Integer(2),Integer(3),Integer(4)),latex=True) '\\text{Sq}^{1} \\text{Sq}^{2} \\text{Sq}^{3} \\text{Sq}^{4}' >>> serre_cartan_mono_to_string((Integer(0),Integer(5),Integer(1),Integer(1),Integer(0)), generic=True) 'P^{5} beta P^{1}' >>> serre_cartan_mono_to_string((Integer(0),Integer(5),Integer(1),Integer(1),Integer(0)), generic=True, latex=True) '\\mathcal{P}^{5} \\beta \\mathcal{P}^{1}'
The empty tuple represents the unit element 1:
sage: serre_cartan_mono_to_string(()) '1' sage: serre_cartan_mono_to_string((), generic=True) '1'
>>> from sage.all import * >>> serre_cartan_mono_to_string(()) '1' >>> serre_cartan_mono_to_string((), generic=True) '1'
- sage.algebras.steenrod.steenrod_algebra_misc.wall_long_mono_to_string(mono, latex=False)[source]¶
Alternate string representation of element of Wall’s basis.
This is used by the _repr_ and _latex_ methods.
INPUT:
mono
– tuple of pairs of nonnegative integers (m,k) with \(m >= k\)latex
– boolean (default:False
); ifTrue
, output LaTeX string
OUTPUT:
string
– concatenation of strings of the formSq^(2^m)
EXAMPLES:
sage: from sage.algebras.steenrod.steenrod_algebra_misc import wall_long_mono_to_string sage: wall_long_mono_to_string(((1,2),(3,0))) 'Sq^{1} Sq^{2} Sq^{4} Sq^{8}' sage: wall_long_mono_to_string(((1,2),(3,0)),latex=True) '\text{Sq}^{1} \text{Sq}^{2} \text{Sq}^{4} \text{Sq}^{8}'
>>> from sage.all import * >>> from sage.algebras.steenrod.steenrod_algebra_misc import wall_long_mono_to_string >>> wall_long_mono_to_string(((Integer(1),Integer(2)),(Integer(3),Integer(0)))) 'Sq^{1} Sq^{2} Sq^{4} Sq^{8}' >>> wall_long_mono_to_string(((Integer(1),Integer(2)),(Integer(3),Integer(0))),latex=True) '\text{Sq}^{1} \text{Sq}^{2} \text{Sq}^{4} \text{Sq}^{8}'
The empty tuple represents the unit element:
sage: wall_long_mono_to_string(()) '1'
>>> from sage.all import * >>> wall_long_mono_to_string(()) '1'
- sage.algebras.steenrod.steenrod_algebra_misc.wall_mono_to_string(mono, latex=False)[source]¶
String representation of element of Wall’s basis.
This is used by the _repr_ and _latex_ methods.
INPUT:
mono
– tuple of pairs of nonnegative integers (m,k) with \(m >= k\)latex
– boolean (default:False
); ifTrue
, output LaTeX string
OUTPUT:
string
– concatenation of stringsQ^{m}_{k}
for each pair (m,k)EXAMPLES:
sage: from sage.algebras.steenrod.steenrod_algebra_misc import wall_mono_to_string sage: wall_mono_to_string(((1,2),(3,0))) 'Q^{1}_{2} Q^{3}_{0}' sage: wall_mono_to_string(((1,2),(3,0)),latex=True) 'Q^{1}_{2} Q^{3}_{0}'
>>> from sage.all import * >>> from sage.algebras.steenrod.steenrod_algebra_misc import wall_mono_to_string >>> wall_mono_to_string(((Integer(1),Integer(2)),(Integer(3),Integer(0)))) 'Q^{1}_{2} Q^{3}_{0}' >>> wall_mono_to_string(((Integer(1),Integer(2)),(Integer(3),Integer(0))),latex=True) 'Q^{1}_{2} Q^{3}_{0}'
The empty tuple represents the unit element:
sage: wall_mono_to_string(()) '1'
>>> from sage.all import * >>> wall_mono_to_string(()) '1'
- sage.algebras.steenrod.steenrod_algebra_misc.wood_mono_to_string(mono, latex=False)[source]¶
String representation of element of Wood’s Y and Z bases.
This is used by the _repr_ and _latex_ methods.
INPUT:
mono
– tuple of pairs of nonnegative integers (s,t)latex
– boolean (default:False
); ifTrue
, output LaTeX string
OUTPUT:
string
– concatenation of strings of the formSq^{2^s (2^{t+1}-1)}
for each pair (s,t)EXAMPLES:
sage: from sage.algebras.steenrod.steenrod_algebra_misc import wood_mono_to_string sage: wood_mono_to_string(((1,2),(3,0))) 'Sq^{14} Sq^{8}' sage: wood_mono_to_string(((1,2),(3,0)),latex=True) '\text{Sq}^{14} \text{Sq}^{8}'
>>> from sage.all import * >>> from sage.algebras.steenrod.steenrod_algebra_misc import wood_mono_to_string >>> wood_mono_to_string(((Integer(1),Integer(2)),(Integer(3),Integer(0)))) 'Sq^{14} Sq^{8}' >>> wood_mono_to_string(((Integer(1),Integer(2)),(Integer(3),Integer(0))),latex=True) '\text{Sq}^{14} \text{Sq}^{8}'
The empty tuple represents the unit element:
sage: wood_mono_to_string(()) '1'
>>> from sage.all import * >>> wood_mono_to_string(()) '1'