Freely Generated Lie Conformal Algebras#
AUTHORS:
Reimundo Heluani (2019-08-09): Initial implementation
- class sage.algebras.lie_conformal_algebras.freely_generated_lie_conformal_algebra.FreelyGeneratedLieConformalAlgebra(R, index_set=None, central_elements=None, category=None, element_class=None, prefix=None, **kwds)[source]#
Bases:
LieConformalAlgebraWithBasis
Base class for a central extension of a freely generated Lie conformal algebra.
This class provides minimal functionality, it sets up the family of Lie conformal algebra generators.
Note
We now only accept direct sums of free modules plus some central generators \(C_i\) such that \(TC_i = 0\).
- central_elements()[source]#
The central generators of this Lie conformal algebra.
EXAMPLES:
sage: Vir = lie_conformal_algebras.Virasoro(QQ) sage: Vir.central_elements() (C,) sage: V = lie_conformal_algebras.Affine(QQ, 'A1') sage: V.central_elements() (B['K'],)
>>> from sage.all import * >>> Vir = lie_conformal_algebras.Virasoro(QQ) >>> Vir.central_elements() (C,) >>> V = lie_conformal_algebras.Affine(QQ, 'A1') >>> V.central_elements() (B['K'],)
- lie_conformal_algebra_generators()[source]#
The generators of this Lie conformal algebra.
OUTPUT: a (possibly infinite) family of generators (as an \(R[T]\)-module) of this Lie conformal algebra.
EXAMPLES:
sage: Vir = lie_conformal_algebras.Virasoro(QQ) sage: Vir.lie_conformal_algebra_generators() (L, C) sage: V = lie_conformal_algebras.Affine(QQ,'A1') sage: V.lie_conformal_algebra_generators() (B[alpha[1]], B[alphacheck[1]], B[-alpha[1]], B['K'])
>>> from sage.all import * >>> Vir = lie_conformal_algebras.Virasoro(QQ) >>> Vir.lie_conformal_algebra_generators() (L, C) >>> V = lie_conformal_algebras.Affine(QQ,'A1') >>> V.lie_conformal_algebra_generators() (B[alpha[1]], B[alphacheck[1]], B[-alpha[1]], B['K'])