Lie Algebras Given By Structure Coefficients#

AUTHORS:

  • Travis Scrimshaw (2013-05-03): Initial version

class sage.algebras.lie_algebras.structure_coefficients.LieAlgebraWithStructureCoefficients(R, s_coeff, names, index_set, category=None, prefix=None, bracket=None, latex_bracket=None, string_quotes=None, **kwds)#

Bases: FinitelyGeneratedLieAlgebra, IndexedGenerators

A Lie algebra with a set of specified structure coefficients.

The structure coefficients are specified as a dictionary \(d\) whose keys are pairs of basis indices, and whose values are dictionaries which in turn are indexed by basis indices. The value of \(d\) at a pair \((u, v)\) of basis indices is the dictionary whose \(w\)-th entry (for \(w\) a basis index) is the coefficient of \(b_w\) in the Lie bracket \([b_u, b_v]\) (where \(b_x\) means the basis element with index \(x\)).

INPUT:

  • R – a ring, to be used as the base ring

  • s_coeff – a dictionary, indexed by pairs of basis indices (see below), and whose values are dictionaries which are indexed by (single) basis indices and whose values are elements of \(R\)

  • names – list or tuple of strings

  • index_set – (default: names) list or tuple of hashable and comparable elements

OUTPUT:

A Lie algebra over R which (as an \(R\)-module) is free with a basis indexed by the elements of index_set. The \(i\)-th basis element is displayed using the name names[i]. If we let \(b_i\) denote this \(i\)-th basis element, then the Lie bracket is given by the requirement that the \(b_k\)-coefficient of \([b_i, b_j]\) is s_coeff[(i, j)][k] if s_coeff[(i, j)] exists, otherwise -s_coeff[(j, i)][k] if s_coeff[(j, i)] exists, otherwise \(0\).

EXAMPLES:

We create the Lie algebra of \(\QQ^3\) under the Lie bracket defined by \(\times\) (cross-product):

sage: L = LieAlgebra(QQ, 'x,y,z', {('x','y'): {'z':1}, ('y','z'): {'x':1}, ('z','x'): {'y':1}})
sage: (x,y,z) = L.gens()
sage: L.bracket(x, y)
z
sage: L.bracket(y, x)
-z
class Element#

Bases: StructureCoefficientsElement

change_ring(R)#

Return a Lie algebra with identical structure coefficients over R.

INPUT:

  • R – a ring

EXAMPLES:

sage: L.<x,y,z> = LieAlgebra(ZZ, {('x','y'): {'z':1}})
sage: L.structure_coefficients()
Finite family {('x', 'y'): z}
sage: LQQ = L.change_ring(QQ)
sage: LQQ.structure_coefficients()
Finite family {('x', 'y'): z}
sage: LSR = LQQ.change_ring(SR)                                             # needs sage.symbolic
sage: LSR.structure_coefficients()                                          # needs sage.symbolic
Finite family {('x', 'y'): z}
dimension()#

Return the dimension of self.

EXAMPLES:

sage: L = LieAlgebra(QQ, 'x,y', {('x','y'):{'x':1}})
sage: L.dimension()
2
from_vector(v, order=None, coerce=True)#

Return an element of self from the vector v.

EXAMPLES:

sage: L.<x,y,z> = LieAlgebra(QQ, {('x','y'): {'z':1}})
sage: L.from_vector([1, 2, -2])
x + 2*y - 2*z
module(sparse=True)#

Return self as a free module.

EXAMPLES:

sage: L.<x,y,z> = LieAlgebra(QQ, {('x','y'):{'z':1}})
sage: L.module()
Sparse vector space of dimension 3 over Rational Field
monomial(k)#

Return the monomial indexed by k.

EXAMPLES:

sage: L.<x,y,z> = LieAlgebra(QQ, {('x','y'): {'z':1}})
sage: L.monomial('x')
x
some_elements()#

Return some elements of self.

EXAMPLES:

sage: L = lie_algebras.three_dimensional(QQ, 4, 1, -1, 2)
sage: L.some_elements()
[X, Y, Z, X + Y + Z]
structure_coefficients(include_zeros=False)#

Return the dictionary of structure coefficients of self.

EXAMPLES:

sage: L = LieAlgebra(QQ, 'x,y,z', {('x','y'): {'x':1}})
sage: L.structure_coefficients()
Finite family {('x', 'y'): x}
sage: S = L.structure_coefficients(True); S
Finite family {('x', 'y'): x, ('x', 'z'): 0, ('y', 'z'): 0}
sage: S['x','z'].parent() is L
True
term(k, c=None)#

Return the term indexed by i with coefficient c.

EXAMPLES:

sage: L.<x,y,z> = LieAlgebra(QQ, {('x','y'): {'z':1}})
sage: L.term('x', 4)
4*x
zero()#

Return the element \(0\) in self.

EXAMPLES:

sage: L.<x,y,z> = LieAlgebra(QQ, {('x','y'): {'z':1}})
sage: L.zero()
0