Ideals of Finite Dimensional Algebras¶
It is necessary to use algebras in the category of associative algebras.
- class sage.algebras.finite_dimensional_algebras.finite_dimensional_algebra_ideal.FiniteDimensionalAlgebraIdeal(A, gens=None, given_by_matrix=False)[source]¶
Bases:
Ideal_generic
An ideal of a
FiniteDimensionalAlgebra
.INPUT:
A
– a finite-dimensional algebragens
– the generators of this idealgiven_by_matrix
– boolean (default:False
); whether the basis matrix is given bygens
EXAMPLES:
sage: cat = CommutativeAlgebras(GF(3)).FiniteDimensional().WithBasis() sage: A = FiniteDimensionalAlgebra(GF(3), [Matrix([[1, 0], [0, 1]]), ....: Matrix([[0, 1], [0, 0]])], ....: category=cat) sage: A.ideal(A([0,1])) Ideal (e1) of Finite-dimensional algebra of degree 2 over Finite Field of size 3
>>> from sage.all import * >>> cat = CommutativeAlgebras(GF(Integer(3))).FiniteDimensional().WithBasis() >>> A = FiniteDimensionalAlgebra(GF(Integer(3)), [Matrix([[Integer(1), Integer(0)], [Integer(0), Integer(1)]]), ... Matrix([[Integer(0), Integer(1)], [Integer(0), Integer(0)]])], ... category=cat) >>> A.ideal(A([Integer(0),Integer(1)])) Ideal (e1) of Finite-dimensional algebra of degree 2 over Finite Field of size 3
- basis_matrix()[source]¶
Return the echelonized matrix whose rows form a basis of
self
.EXAMPLES:
sage: cat = CommutativeAlgebras(GF(3)).FiniteDimensional().WithBasis() sage: A = FiniteDimensionalAlgebra(GF(3), [Matrix([[1, 0], [0, 1]]), ....: Matrix([[0, 1], [0, 0]])], ....: category=cat) sage: I = A.ideal(A([1,1])) sage: I.basis_matrix() [1 0] [0 1]
>>> from sage.all import * >>> cat = CommutativeAlgebras(GF(Integer(3))).FiniteDimensional().WithBasis() >>> A = FiniteDimensionalAlgebra(GF(Integer(3)), [Matrix([[Integer(1), Integer(0)], [Integer(0), Integer(1)]]), ... Matrix([[Integer(0), Integer(1)], [Integer(0), Integer(0)]])], ... category=cat) >>> I = A.ideal(A([Integer(1),Integer(1)])) >>> I.basis_matrix() [1 0] [0 1]
- vector_space()[source]¶
Return
self
as a vector space.EXAMPLES:
sage: cat = CommutativeAlgebras(GF(3)).FiniteDimensional().WithBasis() sage: A = FiniteDimensionalAlgebra(GF(3), [Matrix([[1, 0], [0, 1]]), ....: Matrix([[0, 1], [0, 0]])], ....: category=cat) sage: I = A.ideal(A([1,1])) sage: I.vector_space() Vector space of degree 2 and dimension 2 over Finite Field of size 3 Basis matrix: [1 0] [0 1]
>>> from sage.all import * >>> cat = CommutativeAlgebras(GF(Integer(3))).FiniteDimensional().WithBasis() >>> A = FiniteDimensionalAlgebra(GF(Integer(3)), [Matrix([[Integer(1), Integer(0)], [Integer(0), Integer(1)]]), ... Matrix([[Integer(0), Integer(1)], [Integer(0), Integer(0)]])], ... category=cat) >>> I = A.ideal(A([Integer(1),Integer(1)])) >>> I.vector_space() Vector space of degree 2 and dimension 2 over Finite Field of size 3 Basis matrix: [1 0] [0 1]