Lie Conformal Algebra Element#
AUTHORS:
Reimundo Heluani (2019-08-09): Initial implementation.
- class sage.algebras.lie_conformal_algebras.lie_conformal_algebra_element.LCAStructureCoefficientsElement[source]#
Bases:
LCAWithGeneratorsElement
An element of a Lie conformal algebra given by structure coefficients.
- class sage.algebras.lie_conformal_algebras.lie_conformal_algebra_element.LCAWithGeneratorsElement[source]#
Bases:
IndexedFreeModuleElement
The element class of a Lie conformal algebra with a preferred set of generators.
- T(n=1)[source]#
The n-th derivative of this element.
INPUT:
n
– a non-negative integer (default:1
); how many times to apply \(T\) to this element.
We use the divided powers notation \(T^{(j)} = \frac{T^j}{j!}\).
EXAMPLES:
sage: Vir = lie_conformal_algebras.Virasoro(QQ) sage: Vir.inject_variables() Defining L, C sage: L.T() TL sage: L.T(3) 6*T^(3)L sage: C.T() 0 sage: R = lie_conformal_algebras.NeveuSchwarz(QQbar); R.inject_variables() Defining L, G, C sage: (L + 2*G.T() + 4*C).T(2) 2*T^(2)L + 12*T^(3)G
>>> from sage.all import * >>> Vir = lie_conformal_algebras.Virasoro(QQ) >>> Vir.inject_variables() Defining L, C >>> L.T() TL >>> L.T(Integer(3)) 6*T^(3)L >>> C.T() 0 >>> R = lie_conformal_algebras.NeveuSchwarz(QQbar); R.inject_variables() Defining L, G, C >>> (L + Integer(2)*G.T() + Integer(4)*C).T(Integer(2)) 2*T^(2)L + 12*T^(3)G
- is_monomial()[source]#
Whether this element is a monomial.
EXAMPLES:
sage: Vir = lie_conformal_algebras.Virasoro(QQ); L = Vir.0 sage: (L + L.T()).is_monomial() False sage: L.T().is_monomial() True
>>> from sage.all import * >>> Vir = lie_conformal_algebras.Virasoro(QQ); L = Vir.gen(0) >>> (L + L.T()).is_monomial() False >>> L.T().is_monomial() True