Affine Lie Algebras#
AUTHORS:
Travis Scrimshaw (2013-05-03): Initial version
- class sage.algebras.lie_algebras.affine_lie_algebra.AffineLieAlgebra(g, cartan_type, names, kac_moody)[source]#
Bases:
FinitelyGeneratedLieAlgebra
An (untwisted) affine Lie algebra.
Note that the derived subalgebra of the Kac-Moody algebra is the affine Lie algebra.
INPUT:
Can be one of the following:
a base ring and an affine Cartan type: constructs the affine (Kac-Moody) Lie algebra of the classical Lie algebra in the bracket representation over the base ring
a classical Lie algebra: constructs the corresponding affine (Kac-Moody) Lie algebra
There is the optional argument
kac_moody
, which can be set toFalse
to obtain the affine Lie algebra instead of the affine Kac-Moody algebra.REFERENCES:
- basis()[source]#
Return the basis of
self
.EXAMPLES:
sage: g = LieAlgebra(QQ, cartan_type=['D', 4, 1]) sage: B = g.basis() sage: al = RootSystem(['D',4]).root_lattice().simple_roots() sage: B[al[1]+al[2]+al[4],4] (E[alpha[1] + alpha[2] + alpha[4]])#t^4 sage: B[-al[1]-2*al[2]-al[3]-al[4],2] (E[-alpha[1] - 2*alpha[2] - alpha[3] - alpha[4]])#t^2 sage: B[al[4],-2] (E[alpha[4]])#t^-2 sage: B['c'] c sage: B['d'] d sage: g = LieAlgebra(QQ, cartan_type=['D', 4, 2], kac_moody=False) sage: B = g.basis() sage: it = iter(B) sage: [next(it) for _ in range(3)] [c, (E[alpha[1]])#t^0, (E[alpha[2]])#t^0] sage: B['c'] c sage: B['d'] 0
>>> from sage.all import * >>> g = LieAlgebra(QQ, cartan_type=['D', Integer(4), Integer(1)]) >>> B = g.basis() >>> al = RootSystem(['D',Integer(4)]).root_lattice().simple_roots() >>> B[al[Integer(1)]+al[Integer(2)]+al[Integer(4)],Integer(4)] (E[alpha[1] + alpha[2] + alpha[4]])#t^4 >>> B[-al[Integer(1)]-Integer(2)*al[Integer(2)]-al[Integer(3)]-al[Integer(4)],Integer(2)] (E[-alpha[1] - 2*alpha[2] - alpha[3] - alpha[4]])#t^2 >>> B[al[Integer(4)],-Integer(2)] (E[alpha[4]])#t^-2 >>> B['c'] c >>> B['d'] d >>> g = LieAlgebra(QQ, cartan_type=['D', Integer(4), Integer(2)], kac_moody=False) >>> B = g.basis() >>> it = iter(B) >>> [next(it) for _ in range(Integer(3))] [c, (E[alpha[1]])#t^0, (E[alpha[2]])#t^0] >>> B['c'] c >>> B['d'] 0
- c()[source]#
Return the canonical central element \(c\) of
self
.EXAMPLES:
sage: g = LieAlgebra(QQ, cartan_type=['A',3,1]) sage: g.c() c
>>> from sage.all import * >>> g = LieAlgebra(QQ, cartan_type=['A',Integer(3),Integer(1)]) >>> g.c() c
- cartan_type()[source]#
Return the Cartan type of
self
.EXAMPLES:
sage: g = LieAlgebra(QQ, cartan_type=['C',3,1]) sage: g.cartan_type() ['C', 3, 1]
>>> from sage.all import * >>> g = LieAlgebra(QQ, cartan_type=['C',Integer(3),Integer(1)]) >>> g.cartan_type() ['C', 3, 1]
- classical()[source]#
Return the classical Lie algebra of
self
.EXAMPLES:
sage: g = LieAlgebra(QQ, cartan_type=['F',4,1]) sage: g.classical() Lie algebra of ['F', 4] in the Chevalley basis sage: so5 = lie_algebras.so(QQ, 5, 'matrix') sage: A = so5.affine() sage: A.classical() == so5 True
>>> from sage.all import * >>> g = LieAlgebra(QQ, cartan_type=['F',Integer(4),Integer(1)]) >>> g.classical() Lie algebra of ['F', 4] in the Chevalley basis >>> so5 = lie_algebras.so(QQ, Integer(5), 'matrix') >>> A = so5.affine() >>> A.classical() == so5 True
- d()[source]#
Return the canonical derivation \(d\) of
self
.If
self
is the affine Lie algebra, then this returns \(0\).EXAMPLES:
sage: g = LieAlgebra(QQ, cartan_type=['A',3,1]) sage: g.d() d sage: D = g.derived_subalgebra() sage: D.d() 0
>>> from sage.all import * >>> g = LieAlgebra(QQ, cartan_type=['A',Integer(3),Integer(1)]) >>> g.d() d >>> D = g.derived_subalgebra() >>> D.d() 0
- derived_series()[source]#
Return the derived series of
self
.EXAMPLES:
sage: g = LieAlgebra(QQ, cartan_type=['B',3,1]) sage: g.derived_series() [Affine Kac-Moody algebra of ['B', 3] in the Chevalley basis, Affine Lie algebra of ['B', 3] in the Chevalley basis] sage: g.lower_central_series() [Affine Kac-Moody algebra of ['B', 3] in the Chevalley basis, Affine Lie algebra of ['B', 3] in the Chevalley basis] sage: D = g.derived_subalgebra() sage: D.derived_series() [Affine Lie algebra of ['B', 3] in the Chevalley basis]
>>> from sage.all import * >>> g = LieAlgebra(QQ, cartan_type=['B',Integer(3),Integer(1)]) >>> g.derived_series() [Affine Kac-Moody algebra of ['B', 3] in the Chevalley basis, Affine Lie algebra of ['B', 3] in the Chevalley basis] >>> g.lower_central_series() [Affine Kac-Moody algebra of ['B', 3] in the Chevalley basis, Affine Lie algebra of ['B', 3] in the Chevalley basis] >>> D = g.derived_subalgebra() >>> D.derived_series() [Affine Lie algebra of ['B', 3] in the Chevalley basis]
- e(i=None)[source]#
Return the generators \(e\) of
self
.INPUT:
i
– (optional) if specified, return just the generator \(e_i\)
EXAMPLES:
sage: g = LieAlgebra(QQ, cartan_type=['B', 3, 1]) sage: list(g.e()) [(E[-alpha[1] - 2*alpha[2] - 2*alpha[3]])#t^1, (E[alpha[1]])#t^0, (E[alpha[2]])#t^0, (E[alpha[3]])#t^0] sage: g.e(2) (E[alpha[2]])#t^0
>>> from sage.all import * >>> g = LieAlgebra(QQ, cartan_type=['B', Integer(3), Integer(1)]) >>> list(g.e()) [(E[-alpha[1] - 2*alpha[2] - 2*alpha[3]])#t^1, (E[alpha[1]])#t^0, (E[alpha[2]])#t^0, (E[alpha[3]])#t^0] >>> g.e(Integer(2)) (E[alpha[2]])#t^0
- f(i=None)[source]#
Return the generators \(f\) of
self
.INPUT:
i
– (optional) if specified, return just the generator \(f_i\)
EXAMPLES:
sage: g = LieAlgebra(QQ, cartan_type=['A', 5, 2]) sage: list(g.f()) [(E[alpha[1] + 2*alpha[2] + alpha[3]])#t^-1, (E[-alpha[1]])#t^0, (E[-alpha[2]])#t^0, (E[-alpha[3]])#t^0] sage: g.f(2) (E[-alpha[2]])#t^0
>>> from sage.all import * >>> g = LieAlgebra(QQ, cartan_type=['A', Integer(5), Integer(2)]) >>> list(g.f()) [(E[alpha[1] + 2*alpha[2] + alpha[3]])#t^-1, (E[-alpha[1]])#t^0, (E[-alpha[2]])#t^0, (E[-alpha[3]])#t^0] >>> g.f(Integer(2)) (E[-alpha[2]])#t^0
- is_nilpotent()[source]#
Return
False
asself
is semisimple.EXAMPLES:
sage: g = LieAlgebra(QQ, cartan_type=['B',3,1]) sage: g.is_nilpotent() False sage: g.is_solvable() False
>>> from sage.all import * >>> g = LieAlgebra(QQ, cartan_type=['B',Integer(3),Integer(1)]) >>> g.is_nilpotent() False >>> g.is_solvable() False
- is_solvable()[source]#
Return
False
asself
is semisimple.EXAMPLES:
sage: g = LieAlgebra(QQ, cartan_type=['B',3,1]) sage: g.is_nilpotent() False sage: g.is_solvable() False
>>> from sage.all import * >>> g = LieAlgebra(QQ, cartan_type=['B',Integer(3),Integer(1)]) >>> g.is_nilpotent() False >>> g.is_solvable() False
- lie_algebra_generators()[source]#
Return the Lie algebra generators of
self
.EXAMPLES:
sage: g = LieAlgebra(QQ, cartan_type=['A',1,1]) sage: list(g.lie_algebra_generators()) [(E[alpha[1]])#t^0, (E[-alpha[1]])#t^0, (h1)#t^0, (E[-alpha[1]])#t^1, (E[alpha[1]])#t^-1, c, d] sage: L = LieAlgebra(QQ, cartan_type=['A',5,2]) sage: list(L.lie_algebra_generators()) [(E[alpha[1]])#t^0, (E[alpha[2]])#t^0, (E[alpha[3]])#t^0, (E[-alpha[1]])#t^0, (E[-alpha[2]])#t^0, (E[-alpha[3]])#t^0, (h1)#t^0, (h2)#t^0, (h3)#t^0, (E[-alpha[1] - 2*alpha[2] - alpha[3]])#t^1, (E[alpha[1] + 2*alpha[2] + alpha[3]])#t^-1, c, d]
>>> from sage.all import * >>> g = LieAlgebra(QQ, cartan_type=['A',Integer(1),Integer(1)]) >>> list(g.lie_algebra_generators()) [(E[alpha[1]])#t^0, (E[-alpha[1]])#t^0, (h1)#t^0, (E[-alpha[1]])#t^1, (E[alpha[1]])#t^-1, c, d] >>> L = LieAlgebra(QQ, cartan_type=['A',Integer(5),Integer(2)]) >>> list(L.lie_algebra_generators()) [(E[alpha[1]])#t^0, (E[alpha[2]])#t^0, (E[alpha[3]])#t^0, (E[-alpha[1]])#t^0, (E[-alpha[2]])#t^0, (E[-alpha[3]])#t^0, (h1)#t^0, (h2)#t^0, (h3)#t^0, (E[-alpha[1] - 2*alpha[2] - alpha[3]])#t^1, (E[alpha[1] + 2*alpha[2] + alpha[3]])#t^-1, c, d]
- lower_central_series()[source]#
Return the derived series of
self
.EXAMPLES:
sage: g = LieAlgebra(QQ, cartan_type=['B',3,1]) sage: g.derived_series() [Affine Kac-Moody algebra of ['B', 3] in the Chevalley basis, Affine Lie algebra of ['B', 3] in the Chevalley basis] sage: g.lower_central_series() [Affine Kac-Moody algebra of ['B', 3] in the Chevalley basis, Affine Lie algebra of ['B', 3] in the Chevalley basis] sage: D = g.derived_subalgebra() sage: D.derived_series() [Affine Lie algebra of ['B', 3] in the Chevalley basis]
>>> from sage.all import * >>> g = LieAlgebra(QQ, cartan_type=['B',Integer(3),Integer(1)]) >>> g.derived_series() [Affine Kac-Moody algebra of ['B', 3] in the Chevalley basis, Affine Lie algebra of ['B', 3] in the Chevalley basis] >>> g.lower_central_series() [Affine Kac-Moody algebra of ['B', 3] in the Chevalley basis, Affine Lie algebra of ['B', 3] in the Chevalley basis] >>> D = g.derived_subalgebra() >>> D.derived_series() [Affine Lie algebra of ['B', 3] in the Chevalley basis]
- monomial(m)[source]#
Construct the monomial indexed by
m
.EXAMPLES:
sage: g = LieAlgebra(QQ, cartan_type=['B',4,1]) sage: al = RootSystem(['B',4]).root_lattice().simple_roots() sage: g.monomial((al[1]+al[2]+al[3],4)) (E[alpha[1] + alpha[2] + alpha[3]])#t^4 sage: g.monomial((-al[1]-al[2]-2*al[3]-2*al[4],2)) (E[-alpha[1] - alpha[2] - 2*alpha[3] - 2*alpha[4]])#t^2 sage: g.monomial((al[4],-2)) (E[alpha[4]])#t^-2 sage: g.monomial('c') c sage: g.monomial('d') d
>>> from sage.all import * >>> g = LieAlgebra(QQ, cartan_type=['B',Integer(4),Integer(1)]) >>> al = RootSystem(['B',Integer(4)]).root_lattice().simple_roots() >>> g.monomial((al[Integer(1)]+al[Integer(2)]+al[Integer(3)],Integer(4))) (E[alpha[1] + alpha[2] + alpha[3]])#t^4 >>> g.monomial((-al[Integer(1)]-al[Integer(2)]-Integer(2)*al[Integer(3)]-Integer(2)*al[Integer(4)],Integer(2))) (E[-alpha[1] - alpha[2] - 2*alpha[3] - 2*alpha[4]])#t^2 >>> g.monomial((al[Integer(4)],-Integer(2))) (E[alpha[4]])#t^-2 >>> g.monomial('c') c >>> g.monomial('d') d
- class sage.algebras.lie_algebras.affine_lie_algebra.TwistedAffineIndices(cartan_type)[source]#
Bases:
UniqueRepresentation
,Set_generic
The indices for the basis of a twisted affine Lie algebra.
INPUT:
cartan_type
– the Cartan type of twisted affine type Lie algebra
EXAMPLES:
sage: from sage.algebras.lie_algebras.affine_lie_algebra import TwistedAffineIndices sage: I = TwistedAffineIndices(['A', 3, 2]) sage: it = iter(I) sage: [next(it) for _ in range(20)] [(alpha[1], 0), (alpha[2], 0), (alpha[1] + alpha[2], 0), (2*alpha[1] + alpha[2], 0), (-alpha[1], 0), (-alpha[2], 0), (-alpha[1] - alpha[2], 0), (-2*alpha[1] - alpha[2], 0), (alphacheck[1], 0), (alphacheck[2], 0), (alpha[1], 1), (alpha[1] + alpha[2], 1), (-alpha[1], 1), (-alpha[1] - alpha[2], 1), (alphacheck[1], 1), (alpha[1], -1), (alpha[1] + alpha[2], -1), (-alpha[1], -1), (-alpha[1] - alpha[2], -1), (alphacheck[1], -1)] sage: I = TwistedAffineIndices(['A', 4, 2]) sage: it = iter(I) sage: [next(it) for _ in range(20)] [(alpha[0], 0), (alpha[1], 0), (alpha[0] + alpha[1], 0), (2*alpha[0] + alpha[1], 0), (-alpha[0], 0), (-alpha[1], 0), (-alpha[0] - alpha[1], 0), (-2*alpha[0] - alpha[1], 0), (alphacheck[0], 0), (alphacheck[1], 0), (alpha[0], 1), (alpha[1], 1), (alpha[0] + alpha[1], 1), (2*alpha[0] + alpha[1], 1), (-alpha[0], 1), (-alpha[1], 1), (-alpha[0] - alpha[1], 1), (-2*alpha[0] - alpha[1], 1), (2*alpha[0], 1), (2*alpha[0] + 2*alpha[1], 1)] sage: I = TwistedAffineIndices(['A', 2, 2]) sage: it = iter(I) sage: [next(it) for _ in range(10)] [(alpha[0], 0), (-alpha[0], 0), (alphacheck[0], 0), (alpha[0], 1), (-alpha[0], 1), (2*alpha[0], 1), (-2*alpha[0], 1), (alphacheck[0], 1), (alpha[0], -1), (-alpha[0], -1)]
>>> from sage.all import * >>> from sage.algebras.lie_algebras.affine_lie_algebra import TwistedAffineIndices >>> I = TwistedAffineIndices(['A', Integer(3), Integer(2)]) >>> it = iter(I) >>> [next(it) for _ in range(Integer(20))] [(alpha[1], 0), (alpha[2], 0), (alpha[1] + alpha[2], 0), (2*alpha[1] + alpha[2], 0), (-alpha[1], 0), (-alpha[2], 0), (-alpha[1] - alpha[2], 0), (-2*alpha[1] - alpha[2], 0), (alphacheck[1], 0), (alphacheck[2], 0), (alpha[1], 1), (alpha[1] + alpha[2], 1), (-alpha[1], 1), (-alpha[1] - alpha[2], 1), (alphacheck[1], 1), (alpha[1], -1), (alpha[1] + alpha[2], -1), (-alpha[1], -1), (-alpha[1] - alpha[2], -1), (alphacheck[1], -1)] >>> I = TwistedAffineIndices(['A', Integer(4), Integer(2)]) >>> it = iter(I) >>> [next(it) for _ in range(Integer(20))] [(alpha[0], 0), (alpha[1], 0), (alpha[0] + alpha[1], 0), (2*alpha[0] + alpha[1], 0), (-alpha[0], 0), (-alpha[1], 0), (-alpha[0] - alpha[1], 0), (-2*alpha[0] - alpha[1], 0), (alphacheck[0], 0), (alphacheck[1], 0), (alpha[0], 1), (alpha[1], 1), (alpha[0] + alpha[1], 1), (2*alpha[0] + alpha[1], 1), (-alpha[0], 1), (-alpha[1], 1), (-alpha[0] - alpha[1], 1), (-2*alpha[0] - alpha[1], 1), (2*alpha[0], 1), (2*alpha[0] + 2*alpha[1], 1)] >>> I = TwistedAffineIndices(['A', Integer(2), Integer(2)]) >>> it = iter(I) >>> [next(it) for _ in range(Integer(10))] [(alpha[0], 0), (-alpha[0], 0), (alphacheck[0], 0), (alpha[0], 1), (-alpha[0], 1), (2*alpha[0], 1), (-2*alpha[0], 1), (alphacheck[0], 1), (alpha[0], -1), (-alpha[0], -1)]
- class sage.algebras.lie_algebras.affine_lie_algebra.TwistedAffineLieAlgebra(R, cartan_type, kac_moody)[source]#
Bases:
AffineLieAlgebra
A twisted affine Lie algebra.
A twisted affine Lie algebra is an affine Lie algebra for type \(X_N^{(r)}\) with \(r > 1\). We realize this inside an untwisted affine Kac–Moody Lie algebra following Chapter 8 of [Ka1990].
Let \(\overline{\mathfrak{g}}\) be the classical Lie algebra by taking the index set \(I \setminus \{\epsilon\}\), where \(\epsilon = 0\) unless \(\epsilon = n\) for \(X_N^{(r)} = A_{2n}^{(2)}\), for the twisted affine Lie algebra \(\widetilde{\mathfrak{g}}\). Let \(\mathfrak{g}\) be the basic Lie algebra of type \(X_N\). We realize \(\overline{\mathfrak{g}}\) as the fixed-point subalgebra \(\mathfrak{g}^{(0)}\) of \(\mathfrak{g}\) under the order \(r\) diagram automorphism \(\mu\). This naturally acts on the \(\zeta_r\) (a primitive \(r\)-th root of unity) eigenspace \(\mathfrak{g}^{(1)}\) of \(\mu\), which is the highest weight representation corresponding to the small adjoint (where the weight spaces are the short roots of \(\overline{\mathfrak{g}}\)). The twisted affine (Kac-Moody) Lie algebra \(\widehat{\mathfrak{g}}\) is constructed as the subalgebra of \(X_N^{(1)}\) given by
\[\sum_{i \in \ZZ} \mathfrak{g}^{(i \mod 2)} \otimes t^i \oplus R c \oplus R d,\]where \(R\) is the base ring.
We encode our basis by using the classical Lie algebra except for type \(A_{2n}^{(2)}\). For type \(A_{2n}^{(2)}\), the fixed-point algebra \(\mathfrak{g}^{(0)}\) is of type \(B_n\) using the index set \(\{0, \ldots, n-1\}\). For \(\mathfrak{g}^{(1)}\), we identify the weights in this representation with the roots of type \(B_n\) and the double all of its short roots.
- ambient()[source]#
Return the ambient untwisted affine Lie algebra of
self
.EXAMPLES:
sage: g = LieAlgebra(QQ, cartan_type=['A', 5, 2]) sage: g.ambient() Affine Kac-Moody algebra of ['A', 5] in the Chevalley basis
>>> from sage.all import * >>> g = LieAlgebra(QQ, cartan_type=['A', Integer(5), Integer(2)]) >>> g.ambient() Affine Kac-Moody algebra of ['A', 5] in the Chevalley basis
- derived_subalgebra()[source]#
Return the derived subalgebra of
self
.EXAMPLES:
sage: g = LieAlgebra(QQ, cartan_type=['A', 5, 2]) sage: g Twisted affine Kac-Moody algebra of type ['B', 3, 1]^* over Rational Field sage: D = g.derived_subalgebra(); D Twisted affine Lie algebra of type ['B', 3, 1]^* over Rational Field sage: D.derived_subalgebra() == D True
>>> from sage.all import * >>> g = LieAlgebra(QQ, cartan_type=['A', Integer(5), Integer(2)]) >>> g Twisted affine Kac-Moody algebra of type ['B', 3, 1]^* over Rational Field >>> D = g.derived_subalgebra(); D Twisted affine Lie algebra of type ['B', 3, 1]^* over Rational Field >>> D.derived_subalgebra() == D True
- retract(x)[source]#
Retract the element
x
from the ambient untwisted affine Lie algebra intoself
.EXAMPLES:
sage: g = LieAlgebra(QQ, cartan_type=['A', 5, 2]) sage: it = iter(g.basis()) sage: elts = [next(it) for _ in range(20)] sage: elts [c, d, (E[alpha[1]])#t^0, (E[alpha[2]])#t^0, (E[alpha[3]])#t^0, (E[alpha[1] + alpha[2]])#t^0, (E[alpha[2] + alpha[3]])#t^0, (E[2*alpha[2] + alpha[3]])#t^0, (E[alpha[1] + alpha[2] + alpha[3]])#t^0, (E[2*alpha[1] + 2*alpha[2] + alpha[3]])#t^0, (E[alpha[1] + 2*alpha[2] + alpha[3]])#t^0, (E[-alpha[1]])#t^0, (E[-alpha[2]])#t^0, (E[-alpha[3]])#t^0, (E[-alpha[1] - alpha[2]])#t^0, (E[-alpha[2] - alpha[3]])#t^0, (E[-2*alpha[2] - alpha[3]])#t^0, (E[-alpha[1] - alpha[2] - alpha[3]])#t^0, (E[-2*alpha[1] - 2*alpha[2] - alpha[3]])#t^0, (E[-alpha[1] - 2*alpha[2] - alpha[3]])#t^0] sage: all(g.retract(g.to_ambient(x)) == x for x in elts) True
>>> from sage.all import * >>> g = LieAlgebra(QQ, cartan_type=['A', Integer(5), Integer(2)]) >>> it = iter(g.basis()) >>> elts = [next(it) for _ in range(Integer(20))] >>> elts [c, d, (E[alpha[1]])#t^0, (E[alpha[2]])#t^0, (E[alpha[3]])#t^0, (E[alpha[1] + alpha[2]])#t^0, (E[alpha[2] + alpha[3]])#t^0, (E[2*alpha[2] + alpha[3]])#t^0, (E[alpha[1] + alpha[2] + alpha[3]])#t^0, (E[2*alpha[1] + 2*alpha[2] + alpha[3]])#t^0, (E[alpha[1] + 2*alpha[2] + alpha[3]])#t^0, (E[-alpha[1]])#t^0, (E[-alpha[2]])#t^0, (E[-alpha[3]])#t^0, (E[-alpha[1] - alpha[2]])#t^0, (E[-alpha[2] - alpha[3]])#t^0, (E[-2*alpha[2] - alpha[3]])#t^0, (E[-alpha[1] - alpha[2] - alpha[3]])#t^0, (E[-2*alpha[1] - 2*alpha[2] - alpha[3]])#t^0, (E[-alpha[1] - 2*alpha[2] - alpha[3]])#t^0] >>> all(g.retract(g.to_ambient(x)) == x for x in elts) True
- to_ambient()[source]#
Lift the element
x
from the ambient untwisted affine Lie algebra intoself
.EXAMPLES:
sage: g = LieAlgebra(QQ, cartan_type=['A', 5, 2]) sage: g.to_ambient Generic morphism: From: Twisted affine Kac-Moody algebra of type ['B', 3, 1]^* over Rational Field To: Affine Kac-Moody algebra of ['A', 5] in the Chevalley basis
>>> from sage.all import * >>> g = LieAlgebra(QQ, cartan_type=['A', Integer(5), Integer(2)]) >>> g.to_ambient Generic morphism: From: Twisted affine Kac-Moody algebra of type ['B', 3, 1]^* over Rational Field To: Affine Kac-Moody algebra of ['A', 5] in the Chevalley basis
- class sage.algebras.lie_algebras.affine_lie_algebra.UntwistedAffineLieAlgebra(g, kac_moody)[source]#
Bases:
AffineLieAlgebra
An untwisted affine Lie algebra.
Let \(R\) be a ring. Given a finite-dimensional simple Lie algebra \(\mathfrak{g}\) over \(R\), the affine Lie algebra \(\widehat{\mathfrak{g}}^{\prime}\) associated to \(\mathfrak{g}\) is defined as
\[\widehat{\mathfrak{g}}' = \bigl( \mathfrak{g} \otimes R[t, t^{-1}] \bigr) \oplus R c,\]where \(c\) is the canonical central element and \(R[t, t^{-1}]\) is the Laurent polynomial ring over \(R\). The Lie bracket is defined as
\[[x \otimes t^m + \lambda c, y \otimes t^n + \mu c] = [x, y] \otimes t^{m+n} + m \delta_{m,-n} ( x | y ) c,\]where \(( x | y )\) is the Killing form on \(\mathfrak{g}\).
There is a canonical derivation \(d\) on \(\widehat{\mathfrak{g}}'\) that is defined by
\[d(x \otimes t^m + \lambda c) = a \otimes m t^m,\]or equivalently by \(d = t \frac{d}{dt}\).
The affine Kac-Moody algebra \(\widehat{\mathfrak{g}}\) is formed by adjoining the derivation \(d\) such that
\[\widehat{\mathfrak{g}} = \bigl( \mathfrak{g} \otimes R[t,t^{-1}] \bigr) \oplus R c \oplus R d.\]Specifically, the bracket on \(\widehat{\mathfrak{g}}\) is defined as
\[[t^m \otimes x \oplus \lambda c \oplus \mu d, t^n \otimes y \oplus \lambda_1 c \oplus \mu_1 d] = \bigl( t^{m+n} [x,y] + \mu n t^n \otimes y - \mu_1 m t^m \otimes x\bigr) \oplus m \delta_{m,-n} (x|y) c .\]EXAMPLES:
We begin by constructing an affine Kac-Moody algebra of type \(G_2^{(1)}\) from the classical Lie algebra of type \(G_2\):
sage: g = LieAlgebra(QQ, cartan_type=['G',2]) sage: A = g.affine() sage: A Affine Kac-Moody algebra of ['G', 2] in the Chevalley basis
>>> from sage.all import * >>> g = LieAlgebra(QQ, cartan_type=['G',Integer(2)]) >>> A = g.affine() >>> A Affine Kac-Moody algebra of ['G', 2] in the Chevalley basis
Next, we construct the generators and perform some computations:
sage: A.inject_variables() Defining e1, e2, f1, f2, h1, h2, e0, f0, c, d sage: e1.bracket(f1) (h1)#t^0 sage: e0.bracket(f0) (-h1 - 2*h2)#t^0 + 8*c sage: e0.bracket(f1) 0 sage: A[d, f0] (-E[3*alpha[1] + 2*alpha[2]])#t^-1 sage: A([[e0, e2], [[[e1, e2], [e0, [e1, e2]]], e1]]) (-6*E[-3*alpha[1] - alpha[2]])#t^2 sage: f0.bracket(f1) 0 sage: f0.bracket(f2) (E[3*alpha[1] + alpha[2]])#t^-1 sage: A[h1+3*h2, A[[[f0, f2], f1], [f1,f2]] + f1] - f1 (2*E[alpha[1]])#t^-1
>>> from sage.all import * >>> A.inject_variables() Defining e1, e2, f1, f2, h1, h2, e0, f0, c, d >>> e1.bracket(f1) (h1)#t^0 >>> e0.bracket(f0) (-h1 - 2*h2)#t^0 + 8*c >>> e0.bracket(f1) 0 >>> A[d, f0] (-E[3*alpha[1] + 2*alpha[2]])#t^-1 >>> A([[e0, e2], [[[e1, e2], [e0, [e1, e2]]], e1]]) (-6*E[-3*alpha[1] - alpha[2]])#t^2 >>> f0.bracket(f1) 0 >>> f0.bracket(f2) (E[3*alpha[1] + alpha[2]])#t^-1 >>> A[h1+Integer(3)*h2, A[[[f0, f2], f1], [f1,f2]] + f1] - f1 (2*E[alpha[1]])#t^-1
We can construct its derived subalgebra, the affine Lie algebra of type \(G_2^{(1)}\). In this case, there is no canonical derivation, so the generator \(d\) is \(0\):
sage: D = A.derived_subalgebra() sage: D.d() 0
>>> from sage.all import * >>> D = A.derived_subalgebra() >>> D.d() 0
- Element[source]#
alias of
UntwistedAffineLieAlgebraElement
- derived_subalgebra()[source]#
Return the derived subalgebra of
self
.EXAMPLES:
sage: g = LieAlgebra(QQ, cartan_type=['B',3,1]) sage: g Affine Kac-Moody algebra of ['B', 3] in the Chevalley basis sage: D = g.derived_subalgebra(); D Affine Lie algebra of ['B', 3] in the Chevalley basis sage: D.derived_subalgebra() == D True
>>> from sage.all import * >>> g = LieAlgebra(QQ, cartan_type=['B',Integer(3),Integer(1)]) >>> g Affine Kac-Moody algebra of ['B', 3] in the Chevalley basis >>> D = g.derived_subalgebra(); D Affine Lie algebra of ['B', 3] in the Chevalley basis >>> D.derived_subalgebra() == D True