Finite word¶
AUTHORS:
Arnaud Bergeron
Amy Glen
Sébastien Labbé
Franco Saliola
Julien Leroy (March 2010): reduced_rauzy_graph
EXAMPLES:
Creation of a finite word¶
Finite words from Python strings, lists and tuples:
sage: Word("abbabaab")
word: abbabaab
sage: Word([0, 1, 1, 0, 1, 0, 0, 1])
word: 01101001
sage: Word( ('a', 0, 5, 7, 'b', 9, 8) )
word: a057b98
>>> from sage.all import *
>>> Word("abbabaab")
word: abbabaab
>>> Word([Integer(0), Integer(1), Integer(1), Integer(0), Integer(1), Integer(0), Integer(0), Integer(1)])
word: 01101001
>>> Word( ('a', Integer(0), Integer(5), Integer(7), 'b', Integer(9), Integer(8)) )
word: a057b98
Finite words from functions:
sage: f = lambda n : n%3
sage: Word(f, length=13)
word: 0120120120120
>>> from sage.all import *
>>> f = lambda n : n%Integer(3)
>>> Word(f, length=Integer(13))
word: 0120120120120
Finite words from iterators:
sage: from itertools import count
sage: Word(count(), length=10)
word: 0123456789
>>> from sage.all import *
>>> from itertools import count
>>> Word(count(), length=Integer(10))
word: 0123456789
sage: Word( iter('abbccdef') )
word: abbccdef
>>> from sage.all import *
>>> Word( iter('abbccdef') )
word: abbccdef
Finite words from words via concatenation:
sage: u = Word("abcccabba")
sage: v = Word([0, 4, 8, 8, 3])
sage: u * v
word: abcccabba04883
sage: v * u
word: 04883abcccabba
sage: u + v
word: abcccabba04883
sage: u^3 * v^(8/5)
word: abcccabbaabcccabbaabcccabba04883048
>>> from sage.all import *
>>> u = Word("abcccabba")
>>> v = Word([Integer(0), Integer(4), Integer(8), Integer(8), Integer(3)])
>>> u * v
word: abcccabba04883
>>> v * u
word: 04883abcccabba
>>> u + v
word: abcccabba04883
>>> u**Integer(3) * v**(Integer(8)/Integer(5))
word: abcccabbaabcccabbaabcccabba04883048
Finite words from infinite words:
sage: vv = v^Infinity
sage: vv[10000:10015]
word: 048830488304883
>>> from sage.all import *
>>> vv = v**Infinity
>>> vv[Integer(10000):Integer(10015)]
word: 048830488304883
Finite words in a specific combinatorial class:
sage: W = Words("ab")
sage: W
Finite and infinite words over {'a', 'b'}
sage: W("abbabaab")
word: abbabaab
sage: W(["a","b","b","a","b","a","a","b"])
word: abbabaab
sage: W( iter('ababab') )
word: ababab
>>> from sage.all import *
>>> W = Words("ab")
>>> W
Finite and infinite words over {'a', 'b'}
>>> W("abbabaab")
word: abbabaab
>>> W(["a","b","b","a","b","a","a","b"])
word: abbabaab
>>> W( iter('ababab') )
word: ababab
Finite word as the image under a morphism:
sage: m = WordMorphism({0:[4,4,5,0],5:[0,5,5],4:[4,0,0,0]})
sage: m(0)
word: 4450
sage: m(0, order=2)
word: 400040000554450
sage: m(0, order=3)
word: 4000445044504450400044504450445044500550...
>>> from sage.all import *
>>> m = WordMorphism({Integer(0):[Integer(4),Integer(4),Integer(5),Integer(0)],Integer(5):[Integer(0),Integer(5),Integer(5)],Integer(4):[Integer(4),Integer(0),Integer(0),Integer(0)]})
>>> m(Integer(0))
word: 4450
>>> m(Integer(0), order=Integer(2))
word: 400040000554450
>>> m(Integer(0), order=Integer(3))
word: 4000445044504450400044504450445044500550...
Note
The following two finite words have the same string representation:
sage: w = Word('010120')
sage: z = Word([0, 1, 0, 1, 2, 0])
sage: w
word: 010120
sage: z
word: 010120
>>> from sage.all import *
>>> w = Word('010120')
>>> z = Word([Integer(0), Integer(1), Integer(0), Integer(1), Integer(2), Integer(0)])
>>> w
word: 010120
>>> z
word: 010120
but are not equal:
sage: w == z
False
>>> from sage.all import *
>>> w == z
False
Indeed, w and z are defined on different alphabets:
sage: w[2]
'0'
sage: z[2]
0
>>> from sage.all import *
>>> w[Integer(2)]
'0'
>>> z[Integer(2)]
0
Functions and algorithms¶
There are more than 100 functions defined on a finite word. Here are some of them:
sage: w = Word('abaabbba'); w
word: abaabbba
sage: w.is_palindrome()
False
sage: w.is_lyndon()
False
sage: w.number_of_factors()
28
sage: w.critical_exponent()
3
>>> from sage.all import *
>>> w = Word('abaabbba'); w
word: abaabbba
>>> w.is_palindrome()
False
>>> w.is_lyndon()
False
>>> w.number_of_factors()
28
>>> w.critical_exponent()
3
sage: print(w.lyndon_factorization())
(ab, aabbb, a)
sage: print(w.crochemore_factorization())
(a, b, a, ab, bb, a)
>>> from sage.all import *
>>> print(w.lyndon_factorization())
(ab, aabbb, a)
>>> print(w.crochemore_factorization())
(a, b, a, ab, bb, a)
sage: st = w.suffix_tree()
sage: st
Implicit Suffix Tree of the word: abaabbba
sage: st.show(word_labels=True) # needs sage.plot
>>> from sage.all import *
>>> st = w.suffix_tree()
>>> st
Implicit Suffix Tree of the word: abaabbba
>>> st.show(word_labels=True) # needs sage.plot
sage: T = words.FibonacciWord('ab')
sage: T.longest_common_prefix(Word('abaabababbbbbb'))
word: abaababa
>>> from sage.all import *
>>> T = words.FibonacciWord('ab')
>>> T.longest_common_prefix(Word('abaabababbbbbb'))
word: abaababa
As matrix and many other sage objects, words have a parent:
sage: u = Word('xyxxyxyyy')
sage: u.parent()
Finite words over Set of Python objects of class 'object'
>>> from sage.all import *
>>> u = Word('xyxxyxyyy')
>>> u.parent()
Finite words over Set of Python objects of class 'object'
sage: v = Word('xyxxyxyyy', alphabet='xy')
sage: v.parent()
Finite words over {'x', 'y'}
>>> from sage.all import *
>>> v = Word('xyxxyxyyy', alphabet='xy')
>>> v.parent()
Finite words over {'x', 'y'}
Factors and Rauzy Graphs¶
Enumeration of factors, the successive values returned by next(it)
can appear in a different order depending on hardware. Therefore we
mark the three first results of the test random
. The important test
is that the iteration stops properly on the fourth call:
sage: w = Word([4,5,6])^7
sage: it = w.factor_iterator(4)
sage: next(it) # random
word: 6456
sage: next(it) # random
word: 5645
sage: next(it) # random
word: 4564
sage: next(it)
Traceback (most recent call last):
...
StopIteration
>>> from sage.all import *
>>> w = Word([Integer(4),Integer(5),Integer(6)])**Integer(7)
>>> it = w.factor_iterator(Integer(4))
>>> next(it) # random
word: 6456
>>> next(it) # random
word: 5645
>>> next(it) # random
word: 4564
>>> next(it)
Traceback (most recent call last):
...
StopIteration
The set of factors:
sage: sorted(w.factor_set(3))
[word: 456, word: 564, word: 645]
sage: sorted(w.factor_set(4))
[word: 4564, word: 5645, word: 6456]
sage: w.factor_set().cardinality()
61
>>> from sage.all import *
>>> sorted(w.factor_set(Integer(3)))
[word: 456, word: 564, word: 645]
>>> sorted(w.factor_set(Integer(4)))
[word: 4564, word: 5645, word: 6456]
>>> w.factor_set().cardinality()
61
Rauzy graphs:
sage: f = words.FibonacciWord()[:30]
sage: f.rauzy_graph(4) # needs sage.graphs
Looped digraph on 5 vertices
sage: f.reduced_rauzy_graph(4) # needs sage.graphs
Looped multi-digraph on 2 vertices
>>> from sage.all import *
>>> f = words.FibonacciWord()[:Integer(30)]
>>> f.rauzy_graph(Integer(4)) # needs sage.graphs
Looped digraph on 5 vertices
>>> f.reduced_rauzy_graph(Integer(4)) # needs sage.graphs
Looped multi-digraph on 2 vertices
Left-special and bispecial factors:
sage: f.number_of_left_special_factors(7)
1
sage: f.bispecial_factors()
[word: , word: 0, word: 010, word: 010010, word: 01001010010]
>>> from sage.all import *
>>> f.number_of_left_special_factors(Integer(7))
1
>>> f.bispecial_factors()
[word: , word: 0, word: 010, word: 010010, word: 01001010010]
- class sage.combinat.words.finite_word.CallableFromListOfWords(words)[source]¶
Bases:
tuple
A class to create a callable from a list of words. The concatenation of a list of words is obtained by creating a word from this callable.
- class sage.combinat.words.finite_word.Factorization(iterable=(), /)[source]¶
Bases:
list
A list subclass having a nicer representation for factorization of words.
- class sage.combinat.words.finite_word.FiniteWord_class[source]¶
Bases:
Word_class
- BWT()[source]¶
Return the Burrows-Wheeler Transform (BWT) of
self
.The Burrows-Wheeler transform of a finite word \(w\) is obtained from \(w\) by first listing the conjugates of \(w\) in lexicographic order and then concatenating the final letters of the conjugates in this order. See [BW1994].
EXAMPLES:
sage: Word('abaccaaba').BWT() word: cbaabaaca sage: Word('abaab').BWT() word: bbaaa sage: Word('bbabbaca').BWT() word: cbbbbaaa sage: Word('aabaab').BWT() word: bbaaaa sage: Word().BWT() word: sage: Word('a').BWT() word: a
>>> from sage.all import * >>> Word('abaccaaba').BWT() word: cbaabaaca >>> Word('abaab').BWT() word: bbaaa >>> Word('bbabbaca').BWT() word: cbbbbaaa >>> Word('aabaab').BWT() word: bbaaaa >>> Word().BWT() word: >>> Word('a').BWT() word: a
- LZ_decomposition()[source]¶
Return the Crochemore factorization of
self
as an ordered list of factors.The Crochemore factorization or the Lempel-Ziv decomposition of a finite word \(w\) is the unique factorization: \((x_1, x_2, \ldots, x_n)\) of \(w\) with each \(x_i\) satisfying either: C1. \(x_i\) is a letter that does not appear in \(u = x_1\ldots x_{i-1}\); C2. \(x_i\) is the longest prefix of \(v = x_i\ldots x_n\) that also has an occurrence beginning within \(u = x_1\ldots x_{i-1}\). See [Cro1983].
EXAMPLES:
sage: x = Word('abababb') sage: x.crochemore_factorization() (a, b, abab, b) sage: mul(x.crochemore_factorization()) == x True sage: y = Word('abaababacabba') sage: y.crochemore_factorization() (a, b, a, aba, ba, c, ab, ba) sage: mul(y.crochemore_factorization()) == y True sage: x = Word([0,1,0,1,0,1,1]) sage: x.crochemore_factorization() (0, 1, 0101, 1) sage: mul(x.crochemore_factorization()) == x True
>>> from sage.all import * >>> x = Word('abababb') >>> x.crochemore_factorization() (a, b, abab, b) >>> mul(x.crochemore_factorization()) == x True >>> y = Word('abaababacabba') >>> y.crochemore_factorization() (a, b, a, aba, ba, c, ab, ba) >>> mul(y.crochemore_factorization()) == y True >>> x = Word([Integer(0),Integer(1),Integer(0),Integer(1),Integer(0),Integer(1),Integer(1)]) >>> x.crochemore_factorization() (0, 1, 0101, 1) >>> mul(x.crochemore_factorization()) == x True
- abelian_complexity(n)[source]¶
Return the number of abelian vectors of factors of length
n
ofself
.EXAMPLES:
sage: w = words.FibonacciWord()[:100] sage: [w.abelian_complexity(i) for i in range(20)] [1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]
>>> from sage.all import * >>> w = words.FibonacciWord()[:Integer(100)] >>> [w.abelian_complexity(i) for i in range(Integer(20))] [1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]
sage: w = words.ThueMorseWord()[:100] sage: [w.abelian_complexity(i) for i in range(20)] [1, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2]
>>> from sage.all import * >>> w = words.ThueMorseWord()[:Integer(100)] >>> [w.abelian_complexity(i) for i in range(Integer(20))] [1, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2]
- abelian_vector()[source]¶
Return the abelian vector of
self
counting the occurrences of each letter.The vector is defined w.r.t. the order of the alphabet of the parent. See also
evaluation_dict()
.INPUT:
self
– word having a parent on a finite alphabet
OUTPUT: list
EXAMPLES:
sage: W = Words('ab') sage: W('aaabbbbb').abelian_vector() [3, 5] sage: W('a').abelian_vector() [1, 0] sage: W().abelian_vector() [0, 0]
>>> from sage.all import * >>> W = Words('ab') >>> W('aaabbbbb').abelian_vector() [3, 5] >>> W('a').abelian_vector() [1, 0] >>> W().abelian_vector() [0, 0]
The result depends on the alphabet of the parent:
sage: W = Words('abc') sage: W('aabaa').abelian_vector() [4, 1, 0]
>>> from sage.all import * >>> W = Words('abc') >>> W('aabaa').abelian_vector() [4, 1, 0]
- abelian_vectors(n)[source]¶
Return the abelian vectors of factors of length
n
ofself
.The vectors are defined w.r.t. the order of the alphabet of the parent.
OUTPUT: a set of tuples
EXAMPLES:
sage: W = Words([0,1,2]) sage: w = W([0,1,1,0,1,2,0,2,0,2]) sage: w.abelian_vectors(3) {(1, 0, 2), (1, 1, 1), (1, 2, 0), (2, 0, 1)} sage: w[:5].abelian_vectors(3) {(1, 2, 0)} sage: w[5:].abelian_vectors(3) {(1, 0, 2), (2, 0, 1)}
>>> from sage.all import * >>> W = Words([Integer(0),Integer(1),Integer(2)]) >>> w = W([Integer(0),Integer(1),Integer(1),Integer(0),Integer(1),Integer(2),Integer(0),Integer(2),Integer(0),Integer(2)]) >>> w.abelian_vectors(Integer(3)) {(1, 0, 2), (1, 1, 1), (1, 2, 0), (2, 0, 1)} >>> w[:Integer(5)].abelian_vectors(Integer(3)) {(1, 2, 0)} >>> w[Integer(5):].abelian_vectors(Integer(3)) {(1, 0, 2), (2, 0, 1)}
sage: w = words.FibonacciWord()[:100] sage: sorted(w.abelian_vectors(0)) [(0, 0)] sage: sorted(w.abelian_vectors(1)) [(0, 1), (1, 0)] sage: sorted(w.abelian_vectors(7)) [(4, 3), (5, 2)]
>>> from sage.all import * >>> w = words.FibonacciWord()[:Integer(100)] >>> sorted(w.abelian_vectors(Integer(0))) [(0, 0)] >>> sorted(w.abelian_vectors(Integer(1))) [(0, 1), (1, 0)] >>> sorted(w.abelian_vectors(Integer(7))) [(4, 3), (5, 2)]
The word must be defined with a parent on a finite alphabet:
sage: from itertools import count sage: w = Word(count(), alphabet=NN) sage: w[:2].abelian_vectors(2) Traceback (most recent call last): ... TypeError: The alphabet of the parent is infinite; define the word with a parent on a finite alphabet
>>> from sage.all import * >>> from itertools import count >>> w = Word(count(), alphabet=NN) >>> w[:Integer(2)].abelian_vectors(Integer(2)) Traceback (most recent call last): ... TypeError: The alphabet of the parent is infinite; define the word with a parent on a finite alphabet
- apply_permutation_to_letters(permutation)[source]¶
Return the word obtained by applying the permutation
permutation
of the alphabet ofself
to each letter ofself
.EXAMPLES:
sage: w = Words('abcd')('abcd') sage: p = [2,1,4,3] sage: w.apply_permutation_to_letters(p) word: badc sage: u = Words('dabc')('abcd') sage: u.apply_permutation_to_letters(p) word: dcba sage: w.apply_permutation_to_letters(Permutation(p)) word: badc sage: w.apply_permutation_to_letters(PermutationGroupElement(p)) # needs sage.groups word: badc
>>> from sage.all import * >>> w = Words('abcd')('abcd') >>> p = [Integer(2),Integer(1),Integer(4),Integer(3)] >>> w.apply_permutation_to_letters(p) word: badc >>> u = Words('dabc')('abcd') >>> u.apply_permutation_to_letters(p) word: dcba >>> w.apply_permutation_to_letters(Permutation(p)) word: badc >>> w.apply_permutation_to_letters(PermutationGroupElement(p)) # needs sage.groups word: badc
- apply_permutation_to_positions(permutation)[source]¶
Return the word obtained by permuting the positions of the letters in
self
according to the permutationpermutation
.EXAMPLES:
sage: w = Words('abcd')('abcd') sage: w.apply_permutation_to_positions([2,1,4,3]) word: badc sage: u = Words('dabc')('abcd') sage: u.apply_permutation_to_positions([2,1,4,3]) word: badc sage: w.apply_permutation_to_positions(Permutation([2,1,4,3])) word: badc sage: w.apply_permutation_to_positions(PermutationGroupElement([2,1,4,3])) # needs sage.groups word: badc sage: Word([1,2,3,4]).apply_permutation_to_positions([3,4,2,1]) word: 3421
>>> from sage.all import * >>> w = Words('abcd')('abcd') >>> w.apply_permutation_to_positions([Integer(2),Integer(1),Integer(4),Integer(3)]) word: badc >>> u = Words('dabc')('abcd') >>> u.apply_permutation_to_positions([Integer(2),Integer(1),Integer(4),Integer(3)]) word: badc >>> w.apply_permutation_to_positions(Permutation([Integer(2),Integer(1),Integer(4),Integer(3)])) word: badc >>> w.apply_permutation_to_positions(PermutationGroupElement([Integer(2),Integer(1),Integer(4),Integer(3)])) # needs sage.groups word: badc >>> Word([Integer(1),Integer(2),Integer(3),Integer(4)]).apply_permutation_to_positions([Integer(3),Integer(4),Integer(2),Integer(1)]) word: 3421
- balance()[source]¶
Return the balance of
self
.The balance of a word is the smallest number \(q\) such that
self
is \(q\)-balanced [FV2002].A finite or infinite word \(w\) is said to be \(q\)-balanced if for any two factors \(u\), \(v\) of \(w\) of the same length, the difference between the number of \(x\)’s in each of \(u\) and \(v\) is at most \(q\) for all letters \(x\) in the alphabet of \(w\). A \(1\)-balanced word is simply said to be balanced. See Chapter 2 of [Lot2002].
OUTPUT: integer
EXAMPLES:
sage: Word('1111111').balance() 0 sage: Word('001010101011').balance() 2 sage: Word('0101010101').balance() 1
>>> from sage.all import * >>> Word('1111111').balance() 0 >>> Word('001010101011').balance() 2 >>> Word('0101010101').balance() 1
sage: w = Word('11112222') sage: w.is_balanced(2) False sage: w.is_balanced(3) False sage: w.is_balanced(4) True sage: w.is_balanced(5) True sage: w.balance() 4
>>> from sage.all import * >>> w = Word('11112222') >>> w.is_balanced(Integer(2)) False >>> w.is_balanced(Integer(3)) False >>> w.is_balanced(Integer(4)) True >>> w.is_balanced(Integer(5)) True >>> w.balance() 4
- bispecial_factors(n=None)[source]¶
Return the bispecial factors (of length
n
).A factor \(u\) of a word \(w\) is bispecial if it is right special and left special.
INPUT:
n
– integer (default:None
); ifNone
, it returns all bispecial factors
OUTPUT: list of words
EXAMPLES:
sage: w = words.FibonacciWord()[:30] sage: w.bispecial_factors() [word: , word: 0, word: 010, word: 010010, word: 01001010010]
>>> from sage.all import * >>> w = words.FibonacciWord()[:Integer(30)] >>> w.bispecial_factors() [word: , word: 0, word: 010, word: 010010, word: 01001010010]
sage: w = words.ThueMorseWord()[:30] sage: for i in range(10): ....: print("{} {}".format(i, sorted(w.bispecial_factors(i)))) 0 [word: ] 1 [word: 0, word: 1] 2 [word: 01, word: 10] 3 [word: 010, word: 101] 4 [word: 0110, word: 1001] 5 [] 6 [word: 011001, word: 100110] 7 [] 8 [word: 10010110] 9 []
>>> from sage.all import * >>> w = words.ThueMorseWord()[:Integer(30)] >>> for i in range(Integer(10)): ... print("{} {}".format(i, sorted(w.bispecial_factors(i)))) 0 [word: ] 1 [word: 0, word: 1] 2 [word: 01, word: 10] 3 [word: 010, word: 101] 4 [word: 0110, word: 1001] 5 [] 6 [word: 011001, word: 100110] 7 [] 8 [word: 10010110] 9 []
- bispecial_factors_iterator(n=None)[source]¶
Return an iterator over the bispecial factors (of length
n
).A factor \(u\) of a word \(w\) is bispecial if it is right special and left special.
INPUT:
n
– integer (default:None
); ifNone
, it returns an iterator over all bispecial factors
EXAMPLES:
sage: w = words.ThueMorseWord()[:30] sage: for i in range(10): ....: for u in sorted(w.bispecial_factors_iterator(i)): ....: print("{} {}".format(i,u)) 0 1 0 1 1 2 01 2 10 3 010 3 101 4 0110 4 1001 6 011001 6 100110 8 10010110
>>> from sage.all import * >>> w = words.ThueMorseWord()[:Integer(30)] >>> for i in range(Integer(10)): ... for u in sorted(w.bispecial_factors_iterator(i)): ... print("{} {}".format(i,u)) 0 1 0 1 1 2 01 2 10 3 010 3 101 4 0110 4 1001 6 011001 6 100110 8 10010110
sage: key = lambda u : (len(u), u) sage: for u in sorted(w.bispecial_factors_iterator(), key=key): u word: word: 0 word: 1 word: 01 word: 10 word: 010 word: 101 word: 0110 word: 1001 word: 011001 word: 100110 word: 10010110
>>> from sage.all import * >>> key = lambda u : (len(u), u) >>> for u in sorted(w.bispecial_factors_iterator(), key=key): u word: word: 0 word: 1 word: 01 word: 10 word: 010 word: 101 word: 0110 word: 1001 word: 011001 word: 100110 word: 10010110
- border()[source]¶
Return the longest word that is both a proper prefix and a proper suffix of
self
.EXAMPLES:
sage: Word('121212').border() word: 1212 sage: Word('12321').border() word: 1 sage: Word().border() is None True
>>> from sage.all import * >>> Word('121212').border() word: 1212 >>> Word('12321').border() word: 1 >>> Word().border() is None True
- charge(check=True)[source]¶
Return the charge of
self
. This is defined as follows.If \(w\) is a permutation of length \(n\), (in other words, the evaluation of \(w\) is \((1, 1, \dots, 1)\)), the statistic charge(\(w\)) is given by \(\sum_{i=1}^n c_i(w)\) where \(c_1(w) = 0\) and \(c_i(w)\) is defined recursively by setting \(p_i\) equal to \(1\) if \(i\) appears to the right of \(i-1\) in \(w\) and \(0\) otherwise. Then we set \(c_i(w) = c_{i-1}(w) + p_i\).
EXAMPLES:
sage: Word([1, 2, 3]).charge() 3 sage: Word([3, 5, 1, 4, 2]).charge() == 0 + 1 + 1 + 2 + 2 True
>>> from sage.all import * >>> Word([Integer(1), Integer(2), Integer(3)]).charge() 3 >>> Word([Integer(3), Integer(5), Integer(1), Integer(4), Integer(2)]).charge() == Integer(0) + Integer(1) + Integer(1) + Integer(2) + Integer(2) True
If \(w\) is not a permutation, but the evaluation of \(w\) is a partition, the charge of \(w\) is defined to be the sum of its charge subwords (each of which will be a permutation). The first charge subword is found by starting at the end of \(w\) and moving left until the first \(1\) is found. This is marked, and we continue to move to the left until the first \(2\) is found, wrapping around from the beginning of the word back to the end, if necessary. We mark this \(2\), and continue on until we have marked the largest letter in \(w\). The marked letters, with relative order preserved, form the first charge subword of \(w\). This subword is removed, and the next charge subword is found in the same manner from the remaining letters. In the following example, \(w1, w2, w3\) are the charge subwords of \(w\).
EXAMPLES:
sage: w = Word([5,2,3,4,4,1,1,1,2,2,3]) sage: w1 = Word([5, 2, 4, 1, 3]) sage: w2 = Word([3, 4, 1, 2]) sage: w3 = Word([1, 2]) sage: w.charge() == w1.charge() + w2.charge() + w3.charge() True
>>> from sage.all import * >>> w = Word([Integer(5),Integer(2),Integer(3),Integer(4),Integer(4),Integer(1),Integer(1),Integer(1),Integer(2),Integer(2),Integer(3)]) >>> w1 = Word([Integer(5), Integer(2), Integer(4), Integer(1), Integer(3)]) >>> w2 = Word([Integer(3), Integer(4), Integer(1), Integer(2)]) >>> w3 = Word([Integer(1), Integer(2)]) >>> w.charge() == w1.charge() + w2.charge() + w3.charge() True
Finally, if \(w\) does not have partition content, we apply the Lascoux-Schützenberger standardization operators \(s_i\) in such a manner as to obtain a word with partition content. (The word we obtain is independent of the choice of operators.) The charge is then defined to be the charge of this word:
sage: Word([3,3,2,1,1]).charge() 0 sage: Word([1,2,3,1,2]).charge() 2
>>> from sage.all import * >>> Word([Integer(3),Integer(3),Integer(2),Integer(1),Integer(1)]).charge() 0 >>> Word([Integer(1),Integer(2),Integer(3),Integer(1),Integer(2)]).charge() 2
Note that this differs from the definition of charge given in Macdonald’s book. The difference amounts to a choice of reading a word from left-to-right or right-to-left. The choice in Sage was made to agree with the definition of a reading word of a tableau in Sage, and seems to be the more common convention in the literature.
- cocharge()[source]¶
Return the cocharge of
self
. For a word \(w\), this can be defined as \(n_{ev} - ch(w)\), where \(ch(w)\) is the charge of \(w\) and \(ev\) is the evaluation of \(w\), and \(n_{ev}\) is \(\sum_{i<j} min(ev_i, ev_j)\).EXAMPLES:
sage: Word([1,2,3]).cocharge() 0 sage: Word([3,2,1]).cocharge() 3 sage: Word([1,1,2]).cocharge() 0 sage: Word([2,1,2]).cocharge() 1
>>> from sage.all import * >>> Word([Integer(1),Integer(2),Integer(3)]).cocharge() 0 >>> Word([Integer(3),Integer(2),Integer(1)]).cocharge() 3 >>> Word([Integer(1),Integer(1),Integer(2)]).cocharge() 0 >>> Word([Integer(2),Integer(1),Integer(2)]).cocharge() 1
- coerce(other)[source]¶
Try to return a pair of words with a common parent; raise an exception if this is not possible.
This function begins by checking if both words have the same parent. If this is the case, then no work is done and both words are returned as-is.
Otherwise it will attempt to convert
other
to the domain ofself
. If that fails, it will attempt to convertself
to the domain ofother
. If both attempts fail, it raises aTypeError
to signal failure.EXAMPLES:
sage: W1 = Words('abc'); W2 = Words('ab') sage: w1 = W1('abc'); w2 = W2('abba'); w3 = W1('baab') sage: w1.parent() is w2.parent() False sage: a, b = w1.coerce(w2) sage: a.parent() is b.parent() True sage: w1.parent() is w2.parent() False
>>> from sage.all import * >>> W1 = Words('abc'); W2 = Words('ab') >>> w1 = W1('abc'); w2 = W2('abba'); w3 = W1('baab') >>> w1.parent() is w2.parent() False >>> a, b = w1.coerce(w2) >>> a.parent() is b.parent() True >>> w1.parent() is w2.parent() False
- colored_vector(x=0, y=0, width='default', height=1, cmap='hsv', thickness=1, label=None)[source]¶
Return a vector (Graphics object) illustrating
self
. Each letter is represented by a coloured rectangle.If the parent of
self
is a class of words over a finite alphabet, then each letter in the alphabet is assigned a unique colour, and this colour will be the same every time this method is called. This is especially useful when plotting and comparing words defined on the same alphabet.If the alphabet is infinite, then the letters appearing in the word are used as the alphabet.
INPUT:
x
– (default:0
) bottom left x-coordinate of the vectory
– (default:0
) bottom left y-coordinate of the vectorwidth
– (default:'default'
) width of the vector. By default, the width is the length ofself
.height
– (default:1
) height of the vectorthickness
– (default:1
) thickness of the contourcmap
– (default:'hsv'
) color map; for available color map names type:import matplotlib.cm; list(matplotlib.cm.datad)
label
– string (default:None
); a label to add on the colored vector
OUTPUT: Graphics
EXAMPLES:
sage: # needs sage.plot sage: Word(range(20)).colored_vector() Graphics object consisting of 21 graphics primitives sage: Word(range(100)).colored_vector(0,0,10,1) Graphics object consisting of 101 graphics primitives sage: Words(range(100))(range(10)).colored_vector() Graphics object consisting of 11 graphics primitives sage: w = Word('abbabaab') sage: w.colored_vector() Graphics object consisting of 9 graphics primitives sage: w.colored_vector(cmap='autumn') Graphics object consisting of 9 graphics primitives sage: Word(range(20)).colored_vector(label='Rainbow') Graphics object consisting of 23 graphics primitives
>>> from sage.all import * >>> # needs sage.plot >>> Word(range(Integer(20))).colored_vector() Graphics object consisting of 21 graphics primitives >>> Word(range(Integer(100))).colored_vector(Integer(0),Integer(0),Integer(10),Integer(1)) Graphics object consisting of 101 graphics primitives >>> Words(range(Integer(100)))(range(Integer(10))).colored_vector() Graphics object consisting of 11 graphics primitives >>> w = Word('abbabaab') >>> w.colored_vector() Graphics object consisting of 9 graphics primitives >>> w.colored_vector(cmap='autumn') Graphics object consisting of 9 graphics primitives >>> Word(range(Integer(20))).colored_vector(label='Rainbow') Graphics object consisting of 23 graphics primitives
When two words are defined under the same parent, same letters are mapped to same colors:
sage: W = Words(range(20)) sage: w = W(range(20)) sage: y = W(range(10,20)) sage: y.colored_vector(y=1, x=10) + w.colored_vector() # needs sage.plot Graphics object consisting of 32 graphics primitives
>>> from sage.all import * >>> W = Words(range(Integer(20))) >>> w = W(range(Integer(20))) >>> y = W(range(Integer(10),Integer(20))) >>> y.colored_vector(y=Integer(1), x=Integer(10)) + w.colored_vector() # needs sage.plot Graphics object consisting of 32 graphics primitives
- commutes_with(other)[source]¶
Return
True
ifself
commutes withother
, andFalse
otherwise.EXAMPLES:
sage: Word('12').commutes_with(Word('12')) True sage: Word('12').commutes_with(Word('11')) False sage: Word().commutes_with(Word('21')) True
>>> from sage.all import * >>> Word('12').commutes_with(Word('12')) True >>> Word('12').commutes_with(Word('11')) False >>> Word().commutes_with(Word('21')) True
- complete_return_words(fact)[source]¶
Return the set of complete return words of
fact
inself
.This is the set of all factors starting by the given factor and ending just after the next occurrence of this factor. See for instance [JV2000].
INPUT:
fact
– a non-empty finite word
OUTPUT: a Python set of finite words
EXAMPLES:
sage: s = Word('21331233213231').complete_return_words(Word('2')) sage: sorted(s) [word: 2132, word: 213312, word: 2332] sage: Word('').complete_return_words(Word('213')) set() sage: Word('121212').complete_return_words(Word('1212')) {word: 121212}
>>> from sage.all import * >>> s = Word('21331233213231').complete_return_words(Word('2')) >>> sorted(s) [word: 2132, word: 213312, word: 2332] >>> Word('').complete_return_words(Word('213')) set() >>> Word('121212').complete_return_words(Word('1212')) {word: 121212}
- concatenate(other)[source]¶
Return the concatenation of
self
andother
.INPUT:
other
– a word over the same alphabet asself
EXAMPLES:
Concatenation may be made using
+
or*
operations:sage: w = Word('abadafd') sage: y = Word([5,3,5,8,7]) sage: w * y word: abadafd53587 sage: w + y word: abadafd53587 sage: w.concatenate(y) word: abadafd53587
>>> from sage.all import * >>> w = Word('abadafd') >>> y = Word([Integer(5),Integer(3),Integer(5),Integer(8),Integer(7)]) >>> w * y word: abadafd53587 >>> w + y word: abadafd53587 >>> w.concatenate(y) word: abadafd53587
Both words must be defined over the same alphabet:
sage: z = Word('12223', alphabet = '123') sage: z + y Traceback (most recent call last): ... ValueError: 5 not in alphabet
>>> from sage.all import * >>> z = Word('12223', alphabet = '123') >>> z + y Traceback (most recent call last): ... ValueError: 5 not in alphabet
Eventually, it should work:
sage: z = Word('12223', alphabet = '123') sage: z + y #todo: not implemented word: 1222353587
>>> from sage.all import * >>> z = Word('12223', alphabet = '123') >>> z + y #todo: not implemented word: 1222353587
- conjugate(pos)[source]¶
Return the conjugate at
pos
ofself
.pos
can be any integer, the distance used is the modulo by the length ofself
.EXAMPLES:
sage: Word('12112').conjugate(1) word: 21121 sage: Word().conjugate(2) word: sage: Word('12112').conjugate(8) word: 12121 sage: Word('12112').conjugate(-1) word: 21211
>>> from sage.all import * >>> Word('12112').conjugate(Integer(1)) word: 21121 >>> Word().conjugate(Integer(2)) word: >>> Word('12112').conjugate(Integer(8)) word: 12121 >>> Word('12112').conjugate(-Integer(1)) word: 21211
- conjugate_position(other)[source]¶
Return the position where
self
is conjugate withother
. ReturnNone
if there is no such position.EXAMPLES:
sage: Word('12113').conjugate_position(Word('31211')) 1 sage: Word('12131').conjugate_position(Word('12113')) is None True sage: Word().conjugate_position(Word('123')) is None True
>>> from sage.all import * >>> Word('12113').conjugate_position(Word('31211')) 1 >>> Word('12131').conjugate_position(Word('12113')) is None True >>> Word().conjugate_position(Word('123')) is None True
- conjugates()[source]¶
Return the list of unique conjugates of
self
.EXAMPLES:
sage: Word(range(6)).conjugates() [word: 012345, word: 123450, word: 234501, word: 345012, word: 450123, word: 501234] sage: Word('cbbca').conjugates() [word: cbbca, word: bbcac, word: bcacb, word: cacbb, word: acbbc]
>>> from sage.all import * >>> Word(range(Integer(6))).conjugates() [word: 012345, word: 123450, word: 234501, word: 345012, word: 450123, word: 501234] >>> Word('cbbca').conjugates() [word: cbbca, word: bbcac, word: bcacb, word: cacbb, word: acbbc]
The result contains each conjugate only once:
sage: Word('abcabc').conjugates() [word: abcabc, word: bcabca, word: cabcab]
>>> from sage.all import * >>> Word('abcabc').conjugates() [word: abcabc, word: bcabca, word: cabcab]
- conjugates_iterator()[source]¶
Return an iterator over the conjugates of
self
.EXAMPLES:
sage: it = Word(range(4)).conjugates_iterator() sage: for w in it: w word: 0123 word: 1230 word: 2301 word: 3012
>>> from sage.all import * >>> it = Word(range(Integer(4))).conjugates_iterator() >>> for w in it: w word: 0123 word: 1230 word: 2301 word: 3012
- content(n=None)[source]¶
Return content of
self
.INPUT:
n
– (optional) an integer specifying the maximal letter in the alphabet
OUTPUT: list where the \(i\)-th entry indicates the multiplicity of the \(i\)-th letter in the alphabet in
self
EXAMPLES:
sage: w = Word([1,2,4,3,2,2,2]) sage: w.content() [1, 4, 1, 1] sage: w = Word([3,1]) sage: w.content() [1, 1] sage: w.content(n=3) [1, 0, 1] sage: w = Word([2,4],alphabet=[1,2,3,4]) sage: w.content(n=3) [0, 1, 0] sage: w.content() [0, 1, 0, 1]
>>> from sage.all import * >>> w = Word([Integer(1),Integer(2),Integer(4),Integer(3),Integer(2),Integer(2),Integer(2)]) >>> w.content() [1, 4, 1, 1] >>> w = Word([Integer(3),Integer(1)]) >>> w.content() [1, 1] >>> w.content(n=Integer(3)) [1, 0, 1] >>> w = Word([Integer(2),Integer(4)],alphabet=[Integer(1),Integer(2),Integer(3),Integer(4)]) >>> w.content(n=Integer(3)) [0, 1, 0] >>> w.content() [0, 1, 0, 1]
- count(letter)[source]¶
Return the number of occurrences of
letter
inself
.INPUT:
letter
– a letter
OUTPUT: integer
EXAMPLES:
sage: w = Word('abbabaab') sage: w.number_of_letter_occurrences('a') 4 sage: w.number_of_letter_occurrences('ab') 0
>>> from sage.all import * >>> w = Word('abbabaab') >>> w.number_of_letter_occurrences('a') 4 >>> w.number_of_letter_occurrences('ab') 0
This methods is equivalent to
list(w).count(letter)
andtuple(w).count(letter)
, thuscount
is an alias for the methodnumber_of_letter_occurrences
:sage: list(w).count('a') 4 sage: w.count('a') 4
>>> from sage.all import * >>> list(w).count('a') 4 >>> w.count('a') 4
But notice that if
s
andw
are strings,Word(s).count(w)
counts the number occurrences ofw
as a letter inWord(s)
which is not the same ass.count(w)
which counts the number of occurrences of the stringw
insides
:sage: s = 'abbabaab' sage: s.count('ab') 3 sage: Word(s).count('ab') 0
>>> from sage.all import * >>> s = 'abbabaab' >>> s.count('ab') 3 >>> Word(s).count('ab') 0
- critical_exponent()[source]¶
Return the critical exponent of
self
.The critical exponent of a word is the supremum of the order of all its (finite) factors. See [Dej1972].
Note
The implementation here uses the suffix tree to enumerate all the factors. It should be improved (especially when the critical exponent is larger than 2).
EXAMPLES:
sage: Word('aaba').critical_exponent() 2 sage: Word('aabaa').critical_exponent() 2 sage: Word('aabaaba').critical_exponent() 7/3 sage: Word('ab').critical_exponent() 1 sage: Word('aba').critical_exponent() 3/2 sage: words.ThueMorseWord()[:20].critical_exponent() 2
>>> from sage.all import * >>> Word('aaba').critical_exponent() 2 >>> Word('aabaa').critical_exponent() 2 >>> Word('aabaaba').critical_exponent() 7/3 >>> Word('ab').critical_exponent() 1 >>> Word('aba').critical_exponent() 3/2 >>> words.ThueMorseWord()[:Integer(20)].critical_exponent() 2
For the Fibonacci word, the critical exponent is known to be \((5+\sqrt(5))/2\). With a prefix of length 500, we obtain a lower bound:
sage: words.FibonacciWord()[:500].critical_exponent() 320/89
>>> from sage.all import * >>> words.FibonacciWord()[:Integer(500)].critical_exponent() 320/89
It is an error to compute the critical exponent of the empty word:
sage: Word('').critical_exponent() Traceback (most recent call last): ... ValueError: no critical exponent for empty word
>>> from sage.all import * >>> Word('').critical_exponent() Traceback (most recent call last): ... ValueError: no critical exponent for empty word
- crochemore_factorization()[source]¶
Return the Crochemore factorization of
self
as an ordered list of factors.The Crochemore factorization or the Lempel-Ziv decomposition of a finite word \(w\) is the unique factorization: \((x_1, x_2, \ldots, x_n)\) of \(w\) with each \(x_i\) satisfying either: C1. \(x_i\) is a letter that does not appear in \(u = x_1\ldots x_{i-1}\); C2. \(x_i\) is the longest prefix of \(v = x_i\ldots x_n\) that also has an occurrence beginning within \(u = x_1\ldots x_{i-1}\). See [Cro1983].
EXAMPLES:
sage: x = Word('abababb') sage: x.crochemore_factorization() (a, b, abab, b) sage: mul(x.crochemore_factorization()) == x True sage: y = Word('abaababacabba') sage: y.crochemore_factorization() (a, b, a, aba, ba, c, ab, ba) sage: mul(y.crochemore_factorization()) == y True sage: x = Word([0,1,0,1,0,1,1]) sage: x.crochemore_factorization() (0, 1, 0101, 1) sage: mul(x.crochemore_factorization()) == x True
>>> from sage.all import * >>> x = Word('abababb') >>> x.crochemore_factorization() (a, b, abab, b) >>> mul(x.crochemore_factorization()) == x True >>> y = Word('abaababacabba') >>> y.crochemore_factorization() (a, b, a, aba, ba, c, ab, ba) >>> mul(y.crochemore_factorization()) == y True >>> x = Word([Integer(0),Integer(1),Integer(0),Integer(1),Integer(0),Integer(1),Integer(1)]) >>> x.crochemore_factorization() (0, 1, 0101, 1) >>> mul(x.crochemore_factorization()) == x True
- defect(f=None)[source]¶
Return the defect of
self
.The defect of a finite word \(w\) is given by the difference between the maximum number of possible palindromic factors in a word of length \(|w|\) and the actual number of palindromic factors contained in \(w\). It is well known that the maximum number of palindromic factors in \(w\) is \(|w|+1\) (see [DJP2001]).
An optional involution on letters
f
can be given. In that case, the f-palindromic defect (or pseudopalindromic defect, or theta-palindromic defect) of \(w\) is returned. It is a generalization of defect to f-palindromes. More precisely, the defect is \(D(w)=|w|+1-g_f(w)-|PAL_f(w)|\), where \(PAL_f(w)\) denotes the set of f-palindromic factors of \(w\) (including the empty word) and \(g_f(w)\) is the number of pairs \(\{a, f(a)\}\) such that \(a\) is a letter, \(a\) is not equal to \(f(a)\), and \(a\) or \(f(a)\) occurs in \(w\). In the case of usual palindromes (i.e., forf
not given or equal to the identity), \(g_f(w) = 0\) for all \(w\). See [BHNR2004] for usual palindromes and [Star2011] for f-palindromes.INPUT:
f
– involution (default:None
) on the alphabet ofself
. It must be callable on letters as well as words (e.g.WordMorphism
). The default value corresponds to usual palindromes, i.e.,f
equal to the identity.
OUTPUT:
an integer – If
f
isNone
, the palindromic defect ofself
; otherwise, thef
-palindromic defect ofself
.EXAMPLES:
sage: Word('ara').defect() 0 sage: Word('abcacba').defect() 1
>>> from sage.all import * >>> Word('ara').defect() 0 >>> Word('abcacba').defect() 1
It is known that Sturmian words (see [DJP2001]) have zero defect:
sage: words.FibonacciWord()[:100].defect() 0 sage: sa = WordMorphism('a->ab,b->b') sage: sb = WordMorphism('a->a,b->ba') sage: w = (sa*sb*sb*sa*sa*sa*sb).fixed_point('a') sage: w[:30].defect() # needs sage.modules 0 sage: w[110:140].defect() # needs sage.modules 0
>>> from sage.all import * >>> words.FibonacciWord()[:Integer(100)].defect() 0 >>> sa = WordMorphism('a->ab,b->b') >>> sb = WordMorphism('a->a,b->ba') >>> w = (sa*sb*sb*sa*sa*sa*sb).fixed_point('a') >>> w[:Integer(30)].defect() # needs sage.modules 0 >>> w[Integer(110):Integer(140)].defect() # needs sage.modules 0
It is even conjectured that the defect of an aperiodic word which is a fixed point of a primitive morphism is either \(0\) or infinite (see [BBGL2008]):
sage: w = words.ThueMorseWord() sage: w[:50].defect() # needs sage.modules 12 sage: w[:100].defect() # needs sage.modules 16 sage: w[:300].defect() # needs sage.modules 52
>>> from sage.all import * >>> w = words.ThueMorseWord() >>> w[:Integer(50)].defect() # needs sage.modules 12 >>> w[:Integer(100)].defect() # needs sage.modules 16 >>> w[:Integer(300)].defect() # needs sage.modules 52
For generalized defect with an involution different from the identity, there is always a letter which is not a palindrome! This is the reason for the modification of the definition:
sage: f = WordMorphism('a->b,b->a') sage: Word('a').defect(f) 0 sage: Word('ab').defect(f) 0 sage: Word('aa').defect(f) 1 sage: Word('abbabaabbaababba').defect(f) 3
>>> from sage.all import * >>> f = WordMorphism('a->b,b->a') >>> Word('a').defect(f) 0 >>> Word('ab').defect(f) 0 >>> Word('aa').defect(f) 1 >>> Word('abbabaabbaababba').defect(f) 3
sage: f = WordMorphism('a->b,b->a,c->c') sage: Word('cabc').defect(f) 0 sage: Word('abcaab').defect(f) 2
>>> from sage.all import * >>> f = WordMorphism('a->b,b->a,c->c') >>> Word('cabc').defect(f) 0 >>> Word('abcaab').defect(f) 2
Other examples:
sage: Word('000000000000').defect() 0 sage: Word('011010011001').defect() 2 sage: Word('0101001010001').defect() 0 sage: Word().defect() 0 sage: Word('abbabaabbaababba').defect() 2
>>> from sage.all import * >>> Word('000000000000').defect() 0 >>> Word('011010011001').defect() 2 >>> Word('0101001010001').defect() 0 >>> Word().defect() 0 >>> Word('abbabaabbaababba').defect() 2
- deg_inv_lex_less(other, weights=None)[source]¶
Return
True
if the wordself
is degree inverse lexicographically less thanother
.EXAMPLES:
sage: Word([1,2,4]).deg_inv_lex_less(Word([1,3,2])) False sage: Word([3,2,1]).deg_inv_lex_less(Word([1,2,3])) True
>>> from sage.all import * >>> Word([Integer(1),Integer(2),Integer(4)]).deg_inv_lex_less(Word([Integer(1),Integer(3),Integer(2)])) False >>> Word([Integer(3),Integer(2),Integer(1)]).deg_inv_lex_less(Word([Integer(1),Integer(2),Integer(3)])) True
- deg_lex_less(other, weights=None)[source]¶
Return
True
ifself
is degree lexicographically less thanother
, andFalse
otherwise. The weight of each letter in the ordered alphabet is given byweights
, which defaults to[1, 2, 3, ...]
.EXAMPLES:
sage: Word([1,2,3]).deg_lex_less(Word([1,3,2])) True sage: Word([3,2,1]).deg_lex_less(Word([1,2,3])) False sage: W = Words(range(5)) sage: W([1,2,4]).deg_lex_less(W([1,3,2])) False sage: Word("abba").deg_lex_less(Word("abbb"), dict(a=1,b=2)) True sage: Word("abba").deg_lex_less(Word("baba"), dict(a=1,b=2)) True sage: Word("abba").deg_lex_less(Word("aaba"), dict(a=1,b=2)) False sage: Word("abba").deg_lex_less(Word("aaba"), dict(a=1,b=0)) True
>>> from sage.all import * >>> Word([Integer(1),Integer(2),Integer(3)]).deg_lex_less(Word([Integer(1),Integer(3),Integer(2)])) True >>> Word([Integer(3),Integer(2),Integer(1)]).deg_lex_less(Word([Integer(1),Integer(2),Integer(3)])) False >>> W = Words(range(Integer(5))) >>> W([Integer(1),Integer(2),Integer(4)]).deg_lex_less(W([Integer(1),Integer(3),Integer(2)])) False >>> Word("abba").deg_lex_less(Word("abbb"), dict(a=Integer(1),b=Integer(2))) True >>> Word("abba").deg_lex_less(Word("baba"), dict(a=Integer(1),b=Integer(2))) True >>> Word("abba").deg_lex_less(Word("aaba"), dict(a=Integer(1),b=Integer(2))) False >>> Word("abba").deg_lex_less(Word("aaba"), dict(a=Integer(1),b=Integer(0))) True
- deg_rev_lex_less(other, weights=None)[source]¶
Return
True
ifself
is degree reverse lexicographically less thanother
.EXAMPLES:
sage: Word([3,2,1]).deg_rev_lex_less(Word([1,2,3])) False sage: Word([1,2,4]).deg_rev_lex_less(Word([1,3,2])) False sage: Word([1,2,3]).deg_rev_lex_less(Word([1,2,4])) True
>>> from sage.all import * >>> Word([Integer(3),Integer(2),Integer(1)]).deg_rev_lex_less(Word([Integer(1),Integer(2),Integer(3)])) False >>> Word([Integer(1),Integer(2),Integer(4)]).deg_rev_lex_less(Word([Integer(1),Integer(3),Integer(2)])) False >>> Word([Integer(1),Integer(2),Integer(3)]).deg_rev_lex_less(Word([Integer(1),Integer(2),Integer(4)])) True
- degree(weights=None)[source]¶
Return the weighted degree of
self
, where the weighted degree of each letter in the ordered alphabet is given byweights
, which defaults to[1, 2, 3, ...]
.INPUT:
weights
– list or tuple, or dictionary keyed by the letters occurring inself
EXAMPLES:
sage: Word([1,2,3]).degree() 6 sage: Word([3,2,1]).degree() 6 sage: Words("ab")("abba").degree() 6 sage: Words("ab")("abba").degree([0,2]) 4 sage: Words("ab")("abba").degree([-1,-1]) -4 sage: Words("ab")("aabba").degree([1,1]) 5 sage: Words([1,2,4])([1,2,4]).degree() 6 sage: Word([1,2,4]).degree() 7 sage: Word("aabba").degree({'a':1,'b':2}) 7 sage: Word([0,1,0]).degree({0:17,1:0}) 34
>>> from sage.all import * >>> Word([Integer(1),Integer(2),Integer(3)]).degree() 6 >>> Word([Integer(3),Integer(2),Integer(1)]).degree() 6 >>> Words("ab")("abba").degree() 6 >>> Words("ab")("abba").degree([Integer(0),Integer(2)]) 4 >>> Words("ab")("abba").degree([-Integer(1),-Integer(1)]) -4 >>> Words("ab")("aabba").degree([Integer(1),Integer(1)]) 5 >>> Words([Integer(1),Integer(2),Integer(4)])([Integer(1),Integer(2),Integer(4)]).degree() 6 >>> Word([Integer(1),Integer(2),Integer(4)]).degree() 7 >>> Word("aabba").degree({'a':Integer(1),'b':Integer(2)}) 7 >>> Word([Integer(0),Integer(1),Integer(0)]).degree({Integer(0):Integer(17),Integer(1):Integer(0)}) 34
- delta()[source]¶
Return the image of
self
under the delta morphism.The delta morphism, also known as the run-length encoding, is the word composed of the length of consecutive runs of the same letter in a given word.
EXAMPLES:
sage: W = Words('0123456789') sage: W('22112122').delta() word: 22112 sage: W('555008').delta() word: 321 sage: W().delta() word: sage: Word('aabbabaa').delta() word: 22112
>>> from sage.all import * >>> W = Words('0123456789') >>> W('22112122').delta() word: 22112 >>> W('555008').delta() word: 321 >>> W().delta() word: >>> Word('aabbabaa').delta() word: 22112
- delta_derivate(W=None)[source]¶
Return the derivative under delta for
self
.EXAMPLES:
sage: W = Words('12') sage: W('12211').delta_derivate() word: 22 sage: W('1').delta_derivate(Words([1])) word: 1 sage: W('2112').delta_derivate() word: 2 sage: W('2211').delta_derivate() word: 22 sage: W('112').delta_derivate() word: 2 sage: W('11222').delta_derivate(Words([1, 2, 3])) word: 3
>>> from sage.all import * >>> W = Words('12') >>> W('12211').delta_derivate() word: 22 >>> W('1').delta_derivate(Words([Integer(1)])) word: 1 >>> W('2112').delta_derivate() word: 2 >>> W('2211').delta_derivate() word: 22 >>> W('112').delta_derivate() word: 2 >>> W('11222').delta_derivate(Words([Integer(1), Integer(2), Integer(3)])) word: 3
- delta_derivate_left(W=None)[source]¶
Return the derivative under delta for
self
.EXAMPLES:
sage: W = Words('12') sage: W('12211').delta_derivate_left() word: 22 sage: W('1').delta_derivate_left(Words([1])) word: 1 sage: W('2112').delta_derivate_left() word: 21 sage: W('2211').delta_derivate_left() word: 22 sage: W('112').delta_derivate_left() word: 21 sage: W('11222').delta_derivate_left(Words([1, 2, 3])) word: 3
>>> from sage.all import * >>> W = Words('12') >>> W('12211').delta_derivate_left() word: 22 >>> W('1').delta_derivate_left(Words([Integer(1)])) word: 1 >>> W('2112').delta_derivate_left() word: 21 >>> W('2211').delta_derivate_left() word: 22 >>> W('112').delta_derivate_left() word: 21 >>> W('11222').delta_derivate_left(Words([Integer(1), Integer(2), Integer(3)])) word: 3
- delta_derivate_right(W=None)[source]¶
Return the right derivative under delta for
self
.EXAMPLES:
sage: W = Words('12') sage: W('12211').delta_derivate_right() word: 122 sage: W('1').delta_derivate_right(Words([1])) word: 1 sage: W('2112').delta_derivate_right() word: 12 sage: W('2211').delta_derivate_right() word: 22 sage: W('112').delta_derivate_right() word: 2 sage: W('11222').delta_derivate_right(Words([1, 2, 3])) word: 23
>>> from sage.all import * >>> W = Words('12') >>> W('12211').delta_derivate_right() word: 122 >>> W('1').delta_derivate_right(Words([Integer(1)])) word: 1 >>> W('2112').delta_derivate_right() word: 12 >>> W('2211').delta_derivate_right() word: 22 >>> W('112').delta_derivate_right() word: 2 >>> W('11222').delta_derivate_right(Words([Integer(1), Integer(2), Integer(3)])) word: 23
- delta_inv(W=None, s=None)[source]¶
Lift
self
via the delta operator to obtain a word containing the letters in alphabet (default:[0, 1]
). The letters used in the construction start withs
(default:alphabet[0]
) and cycle through alphabet.INPUT:
alphabet
– an iterables
– an object in the iterable
EXAMPLES:
sage: W = Words([1, 2]) sage: W([2, 2, 1, 1]).delta_inv() word: 112212 sage: W([1, 1, 1, 1]).delta_inv(Words('123')) word: 1231 sage: W([2, 2, 1, 1, 2]).delta_inv(s=2) word: 22112122
>>> from sage.all import * >>> W = Words([Integer(1), Integer(2)]) >>> W([Integer(2), Integer(2), Integer(1), Integer(1)]).delta_inv() word: 112212 >>> W([Integer(1), Integer(1), Integer(1), Integer(1)]).delta_inv(Words('123')) word: 1231 >>> W([Integer(2), Integer(2), Integer(1), Integer(1), Integer(2)]).delta_inv(s=Integer(2)) word: 22112122
- evaluation()[source]¶
Return the abelian vector of
self
counting the occurrences of each letter.The vector is defined w.r.t. the order of the alphabet of the parent. See also
evaluation_dict()
.INPUT:
self
– word having a parent on a finite alphabet
OUTPUT: list
EXAMPLES:
sage: W = Words('ab') sage: W('aaabbbbb').abelian_vector() [3, 5] sage: W('a').abelian_vector() [1, 0] sage: W().abelian_vector() [0, 0]
>>> from sage.all import * >>> W = Words('ab') >>> W('aaabbbbb').abelian_vector() [3, 5] >>> W('a').abelian_vector() [1, 0] >>> W().abelian_vector() [0, 0]
The result depends on the alphabet of the parent:
sage: W = Words('abc') sage: W('aabaa').abelian_vector() [4, 1, 0]
>>> from sage.all import * >>> W = Words('abc') >>> W('aabaa').abelian_vector() [4, 1, 0]
- evaluation_dict()[source]¶
Return a dictionary keyed by the letters occurring in
self
with values the number of occurrences of the letter.EXAMPLES:
sage: Word([2,1,4,2,3,4,2]).evaluation_dict() {1: 1, 2: 3, 3: 1, 4: 2} sage: Word('badbcdb').evaluation_dict() {'a': 1, 'b': 3, 'c': 1, 'd': 2} sage: Word().evaluation_dict() {}
>>> from sage.all import * >>> Word([Integer(2),Integer(1),Integer(4),Integer(2),Integer(3),Integer(4),Integer(2)]).evaluation_dict() {1: 1, 2: 3, 3: 1, 4: 2} >>> Word('badbcdb').evaluation_dict() {'a': 1, 'b': 3, 'c': 1, 'd': 2} >>> Word().evaluation_dict() {}
sage: f = Word('1213121').evaluation_dict() # keys appear in random order {'1': 4, '2': 2, '3': 1}
>>> from sage.all import * >>> f = Word('1213121').evaluation_dict() # keys appear in random order {'1': 4, '2': 2, '3': 1}
- evaluation_partition()[source]¶
Return the evaluation of the word w as a partition.
EXAMPLES:
sage: Word("acdabda").evaluation_partition() [3, 2, 1, 1] sage: Word([2,1,4,2,3,4,2]).evaluation_partition() [3, 2, 1, 1]
>>> from sage.all import * >>> Word("acdabda").evaluation_partition() [3, 2, 1, 1] >>> Word([Integer(2),Integer(1),Integer(4),Integer(2),Integer(3),Integer(4),Integer(2)]).evaluation_partition() [3, 2, 1, 1]
- evaluation_sparse()[source]¶
Return a list representing the evaluation of
self
. The entries of the list are two-element lists[a, n]
, wherea
is a letter occurring inself
andn
is the number of occurrences ofa
inself
.EXAMPLES:
sage: sorted(Word([4,4,2,5,2,1,4,1]).evaluation_sparse()) [(1, 2), (2, 2), (4, 3), (5, 1)] sage: sorted(Word("abcaccab").evaluation_sparse()) [('a', 3), ('b', 2), ('c', 3)]
>>> from sage.all import * >>> sorted(Word([Integer(4),Integer(4),Integer(2),Integer(5),Integer(2),Integer(1),Integer(4),Integer(1)]).evaluation_sparse()) [(1, 2), (2, 2), (4, 3), (5, 1)] >>> sorted(Word("abcaccab").evaluation_sparse()) [('a', 3), ('b', 2), ('c', 3)]
- exponent()[source]¶
Return the exponent of
self
.OUTPUT: integer; the exponent
EXAMPLES:
sage: Word('1231').exponent() 1 sage: Word('121212').exponent() 3 sage: Word().exponent() 0
>>> from sage.all import * >>> Word('1231').exponent() 1 >>> Word('121212').exponent() 3 >>> Word().exponent() 0
- factor_complexity(n)[source]¶
Return the number of distinct factors of length
n
ofself
.INPUT:
n
– the length of the factors
EXAMPLES:
sage: w = words.FibonacciWord()[:100] sage: [w.factor_complexity(i) for i in range(20)] [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]
>>> from sage.all import * >>> w = words.FibonacciWord()[:Integer(100)] >>> [w.factor_complexity(i) for i in range(Integer(20))] [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]
sage: w = words.ThueMorseWord()[:1000] sage: [w.factor_complexity(i) for i in range(20)] [1, 2, 4, 6, 10, 12, 16, 20, 22, 24, 28, 32, 36, 40, 42, 44, 46, 48, 52, 56]
>>> from sage.all import * >>> w = words.ThueMorseWord()[:Integer(1000)] >>> [w.factor_complexity(i) for i in range(Integer(20))] [1, 2, 4, 6, 10, 12, 16, 20, 22, 24, 28, 32, 36, 40, 42, 44, 46, 48, 52, 56]
- factor_iterator(n=None)[source]¶
Generate distinct factors of
self
.INPUT:
n
– integer orNone
OUTPUT:
If
n
is an integer, returns an iterator over all distinct factors of lengthn
. Ifn
isNone
, returns an iterator generating all distinct factors.EXAMPLES:
sage: w = Word('1213121') sage: sorted( w.factor_iterator(0) ) [word: ] sage: sorted( w.factor_iterator(10) ) [] sage: sorted( w.factor_iterator(1) ) [word: 1, word: 2, word: 3] sage: sorted( w.factor_iterator(4) ) [word: 1213, word: 1312, word: 2131, word: 3121] sage: sorted( w.factor_iterator() ) [word: , word: 1, word: 12, word: 121, word: 1213, word: 12131, word: 121312, word: 1213121, word: 13, word: 131, word: 1312, word: 13121, word: 2, word: 21, word: 213, word: 2131, word: 21312, word: 213121, word: 3, word: 31, word: 312, word: 3121]
>>> from sage.all import * >>> w = Word('1213121') >>> sorted( w.factor_iterator(Integer(0)) ) [word: ] >>> sorted( w.factor_iterator(Integer(10)) ) [] >>> sorted( w.factor_iterator(Integer(1)) ) [word: 1, word: 2, word: 3] >>> sorted( w.factor_iterator(Integer(4)) ) [word: 1213, word: 1312, word: 2131, word: 3121] >>> sorted( w.factor_iterator() ) [word: , word: 1, word: 12, word: 121, word: 1213, word: 12131, word: 121312, word: 1213121, word: 13, word: 131, word: 1312, word: 13121, word: 2, word: 21, word: 213, word: 2131, word: 21312, word: 213121, word: 3, word: 31, word: 312, word: 3121]
sage: u = Word([1,2,1,2,3]) sage: sorted( u.factor_iterator(0) ) [word: ] sage: sorted( u.factor_iterator(10) ) [] sage: sorted( u.factor_iterator(1) ) [word: 1, word: 2, word: 3] sage: sorted( u.factor_iterator(5) ) [word: 12123] sage: sorted( u.factor_iterator() ) [word: , word: 1, word: 12, word: 121, word: 1212, word: 12123, word: 123, word: 2, word: 21, word: 212, word: 2123, word: 23, word: 3]
>>> from sage.all import * >>> u = Word([Integer(1),Integer(2),Integer(1),Integer(2),Integer(3)]) >>> sorted( u.factor_iterator(Integer(0)) ) [word: ] >>> sorted( u.factor_iterator(Integer(10)) ) [] >>> sorted( u.factor_iterator(Integer(1)) ) [word: 1, word: 2, word: 3] >>> sorted( u.factor_iterator(Integer(5)) ) [word: 12123] >>> sorted( u.factor_iterator() ) [word: , word: 1, word: 12, word: 121, word: 1212, word: 12123, word: 123, word: 2, word: 21, word: 212, word: 2123, word: 23, word: 3]
sage: xxx = Word("xxx") sage: sorted( xxx.factor_iterator(0) ) [word: ] sage: sorted( xxx.factor_iterator(4) ) [] sage: sorted( xxx.factor_iterator(2) ) [word: xx] sage: sorted( xxx.factor_iterator() ) [word: , word: x, word: xx, word: xxx]
>>> from sage.all import * >>> xxx = Word("xxx") >>> sorted( xxx.factor_iterator(Integer(0)) ) [word: ] >>> sorted( xxx.factor_iterator(Integer(4)) ) [] >>> sorted( xxx.factor_iterator(Integer(2)) ) [word: xx] >>> sorted( xxx.factor_iterator() ) [word: , word: x, word: xx, word: xxx]
sage: e = Word() sage: sorted( e.factor_iterator(0) ) [word: ] sage: sorted( e.factor_iterator(17) ) [] sage: sorted( e.factor_iterator() ) [word: ]
>>> from sage.all import * >>> e = Word() >>> sorted( e.factor_iterator(Integer(0)) ) [word: ] >>> sorted( e.factor_iterator(Integer(17)) ) [] >>> sorted( e.factor_iterator() ) [word: ]
- factor_occurrences_in(other)[source]¶
Return an iterator over all occurrences (including overlapping ones) of
self
inother
in their order of appearance.Warning
This method is deprecated since 2020 and will be removed in a later version of SageMath. Use
factor_occurrences_iterator()
instead.EXAMPLES:
sage: u = Word('121') sage: w = Word('121213211213') sage: list(u.factor_occurrences_in(w)) doctest:warning ... DeprecationWarning: f.factor_occurrences_in(w) is deprecated. Use w.factor_occurrences_iterator(f) instead. See https://github.com/sagemath/sage/issues/30187 for details. [0, 2, 8]
>>> from sage.all import * >>> u = Word('121') >>> w = Word('121213211213') >>> list(u.factor_occurrences_in(w)) doctest:warning ... DeprecationWarning: f.factor_occurrences_in(w) is deprecated. Use w.factor_occurrences_iterator(f) instead. See https://github.com/sagemath/sage/issues/30187 for details. [0, 2, 8]
- factor_set(n=None, algorithm='suffix tree')[source]¶
Return the set of factors (of length
n
) ofself
.INPUT:
n
– integer orNone
(default:None
)algorithm
– string (default:'suffix tree'
), takes the following values:'suffix tree'
– construct and use the suffix tree of the word'naive'
– algorithm uses a sliding window
OUTPUT:
If
n
is an integer, returns the set of all distinct factors of lengthn
. Ifn
isNone
, returns the set of all distinct factors.EXAMPLES:
sage: w = Word('121') sage: sorted(w.factor_set()) [word: , word: 1, word: 12, word: 121, word: 2, word: 21] sage: sorted(w.factor_set(algorithm='naive')) [word: , word: 1, word: 12, word: 121, word: 2, word: 21]
>>> from sage.all import * >>> w = Word('121') >>> sorted(w.factor_set()) [word: , word: 1, word: 12, word: 121, word: 2, word: 21] >>> sorted(w.factor_set(algorithm='naive')) [word: , word: 1, word: 12, word: 121, word: 2, word: 21]
sage: w = Word('1213121') sage: for i in range(w.length()): sorted(w.factor_set(i)) [word: ] [word: 1, word: 2, word: 3] [word: 12, word: 13, word: 21, word: 31] [word: 121, word: 131, word: 213, word: 312] [word: 1213, word: 1312, word: 2131, word: 3121] [word: 12131, word: 13121, word: 21312] [word: 121312, word: 213121]
>>> from sage.all import * >>> w = Word('1213121') >>> for i in range(w.length()): sorted(w.factor_set(i)) [word: ] [word: 1, word: 2, word: 3] [word: 12, word: 13, word: 21, word: 31] [word: 121, word: 131, word: 213, word: 312] [word: 1213, word: 1312, word: 2131, word: 3121] [word: 12131, word: 13121, word: 21312] [word: 121312, word: 213121]
sage: w = Word([1,2,1,2,3]) sage: s = w.factor_set() sage: sorted(s) [word: , word: 1, word: 12, word: 121, word: 1212, word: 12123, word: 123, word: 2, word: 21, word: 212, word: 2123, word: 23, word: 3]
>>> from sage.all import * >>> w = Word([Integer(1),Integer(2),Integer(1),Integer(2),Integer(3)]) >>> s = w.factor_set() >>> sorted(s) [word: , word: 1, word: 12, word: 121, word: 1212, word: 12123, word: 123, word: 2, word: 21, word: 212, word: 2123, word: 23, word: 3]
- find(sub, start=0, end=None)[source]¶
Return the index of the first occurrence of
sub
inself
, such thatsub
is contained withinself[start:end]
. Return \(-1\) on failure.INPUT:
sub
– string, list, tuple or word to search forstart
– nonnegative integer (default: \(0\)) specifying the position from which to start the searchend
– nonnegative integer (default:None
); specifying the position at which the search must stop. IfNone
, then the search is performed up to the end of the string.
OUTPUT: nonnegative integer or \(-1\)
EXAMPLES:
sage: w = Word([0,1,0,0,1]) sage: w.find(Word([1,0])) 1
>>> from sage.all import * >>> w = Word([Integer(0),Integer(1),Integer(0),Integer(0),Integer(1)]) >>> w.find(Word([Integer(1),Integer(0)])) 1
The
sub
argument can also be a tuple or a list:sage: w.find([1,0]) 1 sage: w.find((1,0)) 1
>>> from sage.all import * >>> w.find([Integer(1),Integer(0)]) 1 >>> w.find((Integer(1),Integer(0))) 1
Examples using
start
andend
:sage: w.find(Word([0,1]), start=1) 3 sage: w.find(Word([0,1]), start=1, end=5) 3 sage: w.find(Word([0,1]), start=1, end=4) == -1 True sage: w.find(Word([1,1])) == -1 True sage: w.find("aa") -1
>>> from sage.all import * >>> w.find(Word([Integer(0),Integer(1)]), start=Integer(1)) 3 >>> w.find(Word([Integer(0),Integer(1)]), start=Integer(1), end=Integer(5)) 3 >>> w.find(Word([Integer(0),Integer(1)]), start=Integer(1), end=Integer(4)) == -Integer(1) True >>> w.find(Word([Integer(1),Integer(1)])) == -Integer(1) True >>> w.find("aa") -1
Instances of
Word_str
handle string inputs as well:sage: w = Word('abac') sage: w.find('a') 0 sage: w.find('ba') 1
>>> from sage.all import * >>> w = Word('abac') >>> w.find('a') 0 >>> w.find('ba') 1
- first_pos_in(other)[source]¶
Return the position of the first occurrence of
self
inother
, orNone
ifself
is not a factor ofother
.Warning
This method is deprecated since 2020 and will be removed in a later version of SageMath. Use
first_occurrence()
instead.EXAMPLES:
sage: Word('12').first_pos_in(Word('131231')) doctest:warning ... DeprecationWarning: f.first_pos_in(w) is deprecated. Use w.first_occurrence(f) instead. See https://github.com/sagemath/sage/issues/30187 for details. 2 sage: Word('32').first_pos_in(Word('131231')) is None True
>>> from sage.all import * >>> Word('12').first_pos_in(Word('131231')) doctest:warning ... DeprecationWarning: f.first_pos_in(w) is deprecated. Use w.first_occurrence(f) instead. See https://github.com/sagemath/sage/issues/30187 for details. 2 >>> Word('32').first_pos_in(Word('131231')) is None True
- foata_bijection()[source]¶
Return word
self
under the Foata bijection.The Foata bijection \(\phi\) is a bijection on the set of words of given content (by a slight generalization of Section 2 in [FS1978]). It can be defined by induction on the size of the word: Given a word \(w_1 w_2 \cdots w_n\), start with \(\phi(w_1) = w_1\). At the \(i\)-th step, if \(\phi(w_1 w_2 \cdots w_i) = v_1 v_2 \cdots v_i\), we define \(\phi(w_1 w_2 \cdots w_i w_{i+1})\) by placing \(w_{i+1}\) on the end of the word \(v_1 v_2 \cdots v_i\) and breaking the word up into blocks as follows. If \(w_{i+1} \ge v_i\), place a vertical line to the right of each \(v_k\) for which \(w_{i+1} \ge v_k\). Otherwise, if \(w_{i+1} < v_i\), place a vertical line to the right of each \(v_k\) for which \(w_{i+1} < v_k\). In either case, place a vertical line at the start of the word as well. Now, within each block between vertical lines, cyclically shift the entries one place to the right.
For instance, to compute \(\phi([4,1,5,4,2,2,3])\), the sequence of words is
\(4\),
\(|4|1 \to 41\),
\(|4|1|5 \to 415\),
\(|415|4 \to 5414\),
\(|5|4|14|2 \to 54412\),
\(|5441|2|2 \to 154422\),
\(|1|5442|2|3 \to 1254423\).
So \(\phi([4,1,5,4,2,2,3]) = [1,2,5,4,4,2,3]\).
See also
EXAMPLES:
sage: w = Word([2,2,2,1,1,1]) sage: w.foata_bijection() word: 112221 sage: w = Word([2,2,1,2,2,2,1,1,2,1]) sage: w.foata_bijection() word: 2122212211 sage: w = Word([4,1,5,4,2,2,3]) sage: w.foata_bijection() word: 1254423
>>> from sage.all import * >>> w = Word([Integer(2),Integer(2),Integer(2),Integer(1),Integer(1),Integer(1)]) >>> w.foata_bijection() word: 112221 >>> w = Word([Integer(2),Integer(2),Integer(1),Integer(2),Integer(2),Integer(2),Integer(1),Integer(1),Integer(2),Integer(1)]) >>> w.foata_bijection() word: 2122212211 >>> w = Word([Integer(4),Integer(1),Integer(5),Integer(4),Integer(2),Integer(2),Integer(3)]) >>> w.foata_bijection() word: 1254423
- good_suffix_table()[source]¶
Return a table of the maximum skip you can do in order not to miss a possible occurrence of
self
in a word.This is a part of the Boyer-Moore algorithm to find factors. See [BM1977].
EXAMPLES:
sage: Word('121321').good_suffix_table() [5, 5, 5, 5, 3, 3, 1] sage: Word('12412').good_suffix_table() [3, 3, 3, 3, 3, 1]
>>> from sage.all import * >>> Word('121321').good_suffix_table() [5, 5, 5, 5, 3, 3, 1] >>> Word('12412').good_suffix_table() [3, 3, 3, 3, 3, 1]
- has_period(p)[source]¶
Return
True
ifself
has the period \(p\),False
otherwise.Note
By convention, integers greater than the length of
self
are periods ofself
.INPUT:
p
– integer to check if it is a period ofself
EXAMPLES:
sage: w = Word('ababa') sage: w.has_period(2) True sage: w.has_period(3) False sage: w.has_period(4) True sage: w.has_period(-1) False sage: w.has_period(5) True sage: w.has_period(6) True
>>> from sage.all import * >>> w = Word('ababa') >>> w.has_period(Integer(2)) True >>> w.has_period(Integer(3)) False >>> w.has_period(Integer(4)) True >>> w.has_period(-Integer(1)) False >>> w.has_period(Integer(5)) True >>> w.has_period(Integer(6)) True
- has_prefix(other)[source]¶
Test whether
self
hasother
as a prefix.INPUT:
other
– a word, or data describing a word
OUTPUT: boolean
EXAMPLES:
sage: w = Word("abbabaabababa") sage: u = Word("abbab") sage: w.has_prefix(u) True sage: u.has_prefix(w) False sage: u.has_prefix("abbab") True
>>> from sage.all import * >>> w = Word("abbabaabababa") >>> u = Word("abbab") >>> w.has_prefix(u) True >>> u.has_prefix(w) False >>> u.has_prefix("abbab") True
sage: w = Word([0,1,1,0,1,0,0,1,0,1,0,1,0]) sage: u = Word([0,1,1,0,1]) sage: w.has_prefix(u) True sage: u.has_prefix(w) False sage: u.has_prefix([0,1,1,0,1]) True
>>> from sage.all import * >>> w = Word([Integer(0),Integer(1),Integer(1),Integer(0),Integer(1),Integer(0),Integer(0),Integer(1),Integer(0),Integer(1),Integer(0),Integer(1),Integer(0)]) >>> u = Word([Integer(0),Integer(1),Integer(1),Integer(0),Integer(1)]) >>> w.has_prefix(u) True >>> u.has_prefix(w) False >>> u.has_prefix([Integer(0),Integer(1),Integer(1),Integer(0),Integer(1)]) True
- has_suffix(other)[source]¶
Test whether
self
hasother
as a suffix.Note
Some word datatype classes, like
WordDatatype_str
, override this method.INPUT:
other
– a word, or data describing a word
OUTPUT: boolean
EXAMPLES:
sage: w = Word("abbabaabababa") sage: u = Word("ababa") sage: w.has_suffix(u) True sage: u.has_suffix(w) False sage: u.has_suffix("ababa") True
>>> from sage.all import * >>> w = Word("abbabaabababa") >>> u = Word("ababa") >>> w.has_suffix(u) True >>> u.has_suffix(w) False >>> u.has_suffix("ababa") True
sage: w = Word([0,1,1,0,1,0,0,1,0,1,0,1,0]) sage: u = Word([0,1,0,1,0]) sage: w.has_suffix(u) True sage: u.has_suffix(w) False sage: u.has_suffix([0,1,0,1,0]) True
>>> from sage.all import * >>> w = Word([Integer(0),Integer(1),Integer(1),Integer(0),Integer(1),Integer(0),Integer(0),Integer(1),Integer(0),Integer(1),Integer(0),Integer(1),Integer(0)]) >>> u = Word([Integer(0),Integer(1),Integer(0),Integer(1),Integer(0)]) >>> w.has_suffix(u) True >>> u.has_suffix(w) False >>> u.has_suffix([Integer(0),Integer(1),Integer(0),Integer(1),Integer(0)]) True
- implicit_suffix_tree()[source]¶
Return the implicit suffix tree of
self
.The suffix tree of a word \(w\) is a compactification of the suffix trie for \(w\). The compactification removes all nodes that have exactly one incoming edge and exactly one outgoing edge. It consists of two components: a tree and a word. Thus, instead of labelling the edges by factors of \(w\), we can label them by indices of the occurrence of the factors in \(w\).
Type
sage.combinat.words.suffix_trees.ImplicitSuffixTree?
for more information.EXAMPLES:
sage: w = Word("cacao") sage: w.implicit_suffix_tree() Implicit Suffix Tree of the word: cacao
>>> from sage.all import * >>> w = Word("cacao") >>> w.implicit_suffix_tree() Implicit Suffix Tree of the word: cacao
sage: w = Word([0,1,0,1,1]) sage: w.implicit_suffix_tree() Implicit Suffix Tree of the word: 01011
>>> from sage.all import * >>> w = Word([Integer(0),Integer(1),Integer(0),Integer(1),Integer(1)]) >>> w.implicit_suffix_tree() Implicit Suffix Tree of the word: 01011
- inv_lex_less(other)[source]¶
Return
True
ifself
is inverse lexicographically less thanother
.EXAMPLES:
sage: Word([1,2,4]).inv_lex_less(Word([1,3,2])) False sage: Word([3,2,1]).inv_lex_less(Word([1,2,3])) True
>>> from sage.all import * >>> Word([Integer(1),Integer(2),Integer(4)]).inv_lex_less(Word([Integer(1),Integer(3),Integer(2)])) False >>> Word([Integer(3),Integer(2),Integer(1)]).inv_lex_less(Word([Integer(1),Integer(2),Integer(3)])) True
- inversions()[source]¶
Return a list of the inversions of
self
. An inversion is a pair \((i,j)\) of nonnegative integers \(i < j\) such thatself[i] > self[j]
.EXAMPLES:
sage: Word([1,2,3,2,2,1]).inversions() [[1, 5], [2, 3], [2, 4], [2, 5], [3, 5], [4, 5]] sage: Words([3,2,1])([1,2,3,2,2,1]).inversions() [[0, 1], [0, 2], [0, 3], [0, 4], [1, 2]] sage: Word('abbaba').inversions() [[1, 3], [1, 5], [2, 3], [2, 5], [4, 5]] sage: Words('ba')('abbaba').inversions() [[0, 1], [0, 2], [0, 4], [3, 4]]
>>> from sage.all import * >>> Word([Integer(1),Integer(2),Integer(3),Integer(2),Integer(2),Integer(1)]).inversions() [[1, 5], [2, 3], [2, 4], [2, 5], [3, 5], [4, 5]] >>> Words([Integer(3),Integer(2),Integer(1)])([Integer(1),Integer(2),Integer(3),Integer(2),Integer(2),Integer(1)]).inversions() [[0, 1], [0, 2], [0, 3], [0, 4], [1, 2]] >>> Word('abbaba').inversions() [[1, 3], [1, 5], [2, 3], [2, 5], [4, 5]] >>> Words('ba')('abbaba').inversions() [[0, 1], [0, 2], [0, 4], [3, 4]]
- is_balanced(q=1)[source]¶
Return
True
ifself
isq
-balanced, andFalse
otherwise.A finite or infinite word \(w\) is said to be \(q\)-balanced if for any two factors \(u\), \(v\) of \(w\) of the same length, the difference between the number of \(x\)’s in each of \(u\) and \(v\) is at most \(q\) for all letters \(x\) in the alphabet of \(w\). A \(1\)-balanced word is simply said to be balanced. See for instance [CFZ2000] and Chapter 2 of [Lot2002].
INPUT:
q
– integer (default: \(1\)); the balance level
EXAMPLES:
sage: Word('1213121').is_balanced() True sage: Word('1122').is_balanced() False sage: Word('121333121').is_balanced() False sage: Word('121333121').is_balanced(2) False sage: Word('121333121').is_balanced(3) True sage: Word('121122121').is_balanced() False sage: Word('121122121').is_balanced(2) True
>>> from sage.all import * >>> Word('1213121').is_balanced() True >>> Word('1122').is_balanced() False >>> Word('121333121').is_balanced() False >>> Word('121333121').is_balanced(Integer(2)) False >>> Word('121333121').is_balanced(Integer(3)) True >>> Word('121122121').is_balanced() False >>> Word('121122121').is_balanced(Integer(2)) True
- is_cadence(seq)[source]¶
Return
True
ifseq
is a cadence ofself
, andFalse
otherwise.A cadence is an increasing sequence of indexes that all map to the same letter.
EXAMPLES:
sage: Word('121132123').is_cadence([0, 2, 6]) True sage: Word('121132123').is_cadence([0, 1, 2]) False sage: Word('121132123').is_cadence([]) True
>>> from sage.all import * >>> Word('121132123').is_cadence([Integer(0), Integer(2), Integer(6)]) True >>> Word('121132123').is_cadence([Integer(0), Integer(1), Integer(2)]) False >>> Word('121132123').is_cadence([]) True
- is_christoffel()[source]¶
Return
True
ifself
is a Christoffel word, andFalse
otherwise.The Christoffel word of slope \(p/q\) is obtained from the Cayley graph of \(\ZZ/(p+q)\ZZ\) with generator \(q\) as follows. If \(u \rightarrow v\) is an edge in the Cayley graph, then, \(v = u + p \mod{p+q}\). Let \(a\),`b` be the alphabet of \(w\). Label the edge \(u \rightarrow v\) by \(a\) if \(u < v\) and \(b\) otherwise. The Christoffel word is the word obtained by reading the edge labels along the cycle beginning from \(0\).
Equivalently, \(w\) is a Christoffel word iff \(w\) is a symmetric non-empty word and \(w[1:n-1]\) is a palindrome.
See for instance [Ber2007] and [BLRS2009].
INPUT:
self
– word
OUTPUT: boolean;
True
ifself
is a Christoffel word,False
otherwiseEXAMPLES:
sage: Word('00100101').is_christoffel() True sage: Word('aab').is_christoffel() True sage: Word().is_christoffel() False sage: Word('123123123').is_christoffel() False sage: Word('00100').is_christoffel() False sage: Word('0').is_christoffel() True
>>> from sage.all import * >>> Word('00100101').is_christoffel() True >>> Word('aab').is_christoffel() True >>> Word().is_christoffel() False >>> Word('123123123').is_christoffel() False >>> Word('00100').is_christoffel() False >>> Word('0').is_christoffel() True
- is_conjugate_with(other)[source]¶
Return
True
ifself
is a conjugate ofother
, andFalse
otherwise.INPUT:
other
– a finite word
OUTPUT: boolean
EXAMPLES:
sage: w = Word([0..20]) sage: z = Word([7..20] + [0..6]) sage: w word: 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20 sage: z word: 7,8,9,10,11,12,13,14,15,16,17,18,19,20,0,1,2,3,4,5,6 sage: w.is_conjugate_with(z) True sage: z.is_conjugate_with(w) True sage: u = Word([4]*21) sage: u.is_conjugate_with(w) False sage: u.is_conjugate_with(z) False
>>> from sage.all import * >>> w = Word((ellipsis_range(Integer(0),Ellipsis,Integer(20)))) >>> z = Word((ellipsis_range(Integer(7),Ellipsis,Integer(20))) + (ellipsis_range(Integer(0),Ellipsis,Integer(6)))) >>> w word: 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20 >>> z word: 7,8,9,10,11,12,13,14,15,16,17,18,19,20,0,1,2,3,4,5,6 >>> w.is_conjugate_with(z) True >>> z.is_conjugate_with(w) True >>> u = Word([Integer(4)]*Integer(21)) >>> u.is_conjugate_with(w) False >>> u.is_conjugate_with(z) False
Both words must be finite:
sage: w = Word(iter([2]*100),length='unknown') sage: z = Word([2]*100) sage: z.is_conjugate_with(w) #TODO: Not implemented for word of unknown length True sage: wf = Word(iter([2]*100),length='finite') sage: z.is_conjugate_with(wf) True sage: wf.is_conjugate_with(z) True
>>> from sage.all import * >>> w = Word(iter([Integer(2)]*Integer(100)),length='unknown') >>> z = Word([Integer(2)]*Integer(100)) >>> z.is_conjugate_with(w) #TODO: Not implemented for word of unknown length True >>> wf = Word(iter([Integer(2)]*Integer(100)),length='finite') >>> z.is_conjugate_with(wf) True >>> wf.is_conjugate_with(z) True
- is_cube()[source]¶
Return
True
ifself
is a cube, andFalse
otherwise.EXAMPLES:
sage: Word('012012012').is_cube() True sage: Word('01010101').is_cube() False sage: Word().is_cube() True sage: Word('012012').is_cube() False
>>> from sage.all import * >>> Word('012012012').is_cube() True >>> Word('01010101').is_cube() False >>> Word().is_cube() True >>> Word('012012').is_cube() False
- is_cube_free()[source]¶
Return
True
ifself
does not contain cubes, andFalse
otherwise.EXAMPLES:
sage: Word('12312').is_cube_free() True sage: Word('32221').is_cube_free() False sage: Word().is_cube_free() True
>>> from sage.all import * >>> Word('12312').is_cube_free() True >>> Word('32221').is_cube_free() False >>> Word().is_cube_free() True
- is_empty()[source]¶
Return
True
if the length ofself
is zero, andFalse
otherwise.EXAMPLES:
sage: Word([]).is_empty() True sage: Word('a').is_empty() False
>>> from sage.all import * >>> Word([]).is_empty() True >>> Word('a').is_empty() False
- is_factor(other)[source]¶
Return
True
ifself
is a factor ofother
, andFalse
otherwise.A finite word \(u\in A^*\) is a factor of a finite word \(v\in A^*\) if there exists \(p,s\in A^*\) such that \(v=pus\).
EXAMPLES:
sage: u = Word('2113') sage: w = Word('123121332131233121132123') sage: u.is_factor(w) True sage: u = Word('321') sage: w = Word('1231241231312312312') sage: u.is_factor(w) False
>>> from sage.all import * >>> u = Word('2113') >>> w = Word('123121332131233121132123') >>> u.is_factor(w) True >>> u = Word('321') >>> w = Word('1231241231312312312') >>> u.is_factor(w) False
The empty word is factor of another word:
sage: Word().is_factor(Word()) True sage: Word().is_factor(Word('a')) True sage: Word().is_factor(Word([1,2,3])) True sage: Word().is_factor(Word(lambda n:n, length=5)) True
>>> from sage.all import * >>> Word().is_factor(Word()) True >>> Word().is_factor(Word('a')) True >>> Word().is_factor(Word([Integer(1),Integer(2),Integer(3)])) True >>> Word().is_factor(Word(lambda n:n, length=Integer(5))) True
- is_finite()[source]¶
Return
True
.EXAMPLES:
sage: Word([]).is_finite() True sage: Word('a').is_finite() True
>>> from sage.all import * >>> Word([]).is_finite() True >>> Word('a').is_finite() True
- is_full(f=None)[source]¶
Return
True
ifself
has defect \(0\), andFalse
otherwise.A word is full (or rich) if its defect is zero (see [BHNR2004]).
If
f
is given, then thef
-palindromic defect is used (see [PeSt2011]).INPUT:
f
– involution (default:None
) on the alphabet ofself
; it must be callable on letters as well as words (e.g.WordMorphism
)
OUTPUT:
boolean – If
f
isNone
, whetherself
is full; otherwise, whetherself
is full off
-palindromes.EXAMPLES:
sage: words.ThueMorseWord()[:100].is_full() False sage: words.FibonacciWord()[:100].is_full() True sage: Word('000000000000000').is_full() True sage: Word('011010011001').is_full() False sage: Word('2194').is_full() True sage: Word().is_full() True
>>> from sage.all import * >>> words.ThueMorseWord()[:Integer(100)].is_full() False >>> words.FibonacciWord()[:Integer(100)].is_full() True >>> Word('000000000000000').is_full() True >>> Word('011010011001').is_full() False >>> Word('2194').is_full() True >>> Word().is_full() True
sage: f = WordMorphism('a->b,b->a') sage: Word().is_full(f) True sage: w = Word('ab') sage: w.is_full() True sage: w.is_full(f) True
>>> from sage.all import * >>> f = WordMorphism('a->b,b->a') >>> Word().is_full(f) True >>> w = Word('ab') >>> w.is_full() True >>> w.is_full(f) True
sage: f = WordMorphism('a->b,b->a') sage: Word('abab').is_full(f) True sage: Word('abba').is_full(f) False
>>> from sage.all import * >>> f = WordMorphism('a->b,b->a') >>> Word('abab').is_full(f) True >>> Word('abba').is_full(f) False
A simple example of an infinite word full of f-palindromes:
sage: p = WordMorphism({0:'abc',1:'ab'}) sage: f = WordMorphism('a->b,b->a,c->c') sage: p(words.FibonacciWord()[:50]).is_full(f) True sage: p(words.FibonacciWord()[:150]).is_full(f) True
>>> from sage.all import * >>> p = WordMorphism({Integer(0):'abc',Integer(1):'ab'}) >>> f = WordMorphism('a->b,b->a,c->c') >>> p(words.FibonacciWord()[:Integer(50)]).is_full(f) True >>> p(words.FibonacciWord()[:Integer(150)]).is_full(f) True
- is_lyndon()[source]¶
Return
True
ifself
is a Lyndon word, andFalse
otherwise.A Lyndon word is a non-empty word that is lexicographically smaller than each of its proper suffixes (for the given order on its alphabet). That is, \(w\) is a Lyndon word if \(w\) is non-empty and for each factorization \(w = uv\) (with \(u\), \(v\) both non-empty), we have \(w < v\).
Equivalently, \(w\) is a Lyndon word iff \(w\) is a non-empty word that is lexicographically smaller than each of its proper conjugates for the given order on its alphabet.
See for instance [Lot1983].
EXAMPLES:
sage: Word('123132133').is_lyndon() True sage: Word().is_lyndon() False sage: Word('122112').is_lyndon() False
>>> from sage.all import * >>> Word('123132133').is_lyndon() True >>> Word().is_lyndon() False >>> Word('122112').is_lyndon() False
- is_overlap()[source]¶
Return
True
ifself
is an overlap, andFalse
otherwise.EXAMPLES:
sage: Word('12121').is_overlap() True sage: Word('123').is_overlap() False sage: Word('1231').is_overlap() False sage: Word('123123').is_overlap() False sage: Word('1231231').is_overlap() True sage: Word().is_overlap() False
>>> from sage.all import * >>> Word('12121').is_overlap() True >>> Word('123').is_overlap() False >>> Word('1231').is_overlap() False >>> Word('123123').is_overlap() False >>> Word('1231231').is_overlap() True >>> Word().is_overlap() False
- is_palindrome(f=None)[source]¶
Return
True
ifself
is a palindrome (or af
-palindrome), andFalse
otherwise.Let \(f : \Sigma \rightarrow \Sigma\) be an involution that extends to a morphism on \(\Sigma^*\). We say that \(w\in\Sigma^*\) is a `f`-palindrome if \(w=f(\tilde{w})\) [Lab2008]. Also called `f`-pseudo-palindrome [AZZ2005].
INPUT:
f
– involution (default:None
) on the alphabet ofself
. It must be callable on letters as well as words (e.g.WordMorphism
). The default value corresponds to usual palindromes, i.e.,f
equal to the identity.
EXAMPLES:
sage: Word('esope reste ici et se repose').is_palindrome() False sage: Word('esoperesteicietserepose').is_palindrome() True sage: Word('I saw I was I').is_palindrome() True sage: Word('abbcbba').is_palindrome() True sage: Word('abcbdba').is_palindrome() False
>>> from sage.all import * >>> Word('esope reste ici et se repose').is_palindrome() False >>> Word('esoperesteicietserepose').is_palindrome() True >>> Word('I saw I was I').is_palindrome() True >>> Word('abbcbba').is_palindrome() True >>> Word('abcbdba').is_palindrome() False
Some \(f\)-palindromes:
sage: f = WordMorphism('a->b,b->a') sage: Word('aababb').is_palindrome(f) True
>>> from sage.all import * >>> f = WordMorphism('a->b,b->a') >>> Word('aababb').is_palindrome(f) True
sage: f = WordMorphism('a->b,b->a,c->c') sage: Word('abacbacbab').is_palindrome(f) True
>>> from sage.all import * >>> f = WordMorphism('a->b,b->a,c->c') >>> Word('abacbacbab').is_palindrome(f) True
sage: f = WordMorphism({'a':'b','b':'a'}) sage: Word('aababb').is_palindrome(f) True
>>> from sage.all import * >>> f = WordMorphism({'a':'b','b':'a'}) >>> Word('aababb').is_palindrome(f) True
sage: f = WordMorphism({0:[1],1:[0]}) sage: w = words.ThueMorseWord()[:8]; w word: 01101001 sage: w.is_palindrome(f) True
>>> from sage.all import * >>> f = WordMorphism({Integer(0):[Integer(1)],Integer(1):[Integer(0)]}) >>> w = words.ThueMorseWord()[:Integer(8)]; w word: 01101001 >>> w.is_palindrome(f) True
The word must be in the domain of the involution:
sage: f = WordMorphism('a->a') sage: Word('aababb').is_palindrome(f) Traceback (most recent call last): ... KeyError: 'b'
>>> from sage.all import * >>> f = WordMorphism('a->a') >>> Word('aababb').is_palindrome(f) Traceback (most recent call last): ... KeyError: 'b'
- is_prefix(other)[source]¶
Return
True
ifself
is a prefix ofother
, andFalse
otherwise.EXAMPLES:
sage: w = Word('0123456789') sage: y = Word('012345') sage: y.is_prefix(w) True sage: w.is_prefix(y) False sage: w.is_prefix(Word()) False sage: Word().is_prefix(w) True sage: Word().is_prefix(Word()) True
>>> from sage.all import * >>> w = Word('0123456789') >>> y = Word('012345') >>> y.is_prefix(w) True >>> w.is_prefix(y) False >>> w.is_prefix(Word()) False >>> Word().is_prefix(w) True >>> Word().is_prefix(Word()) True
- is_primitive()[source]¶
Return
True
ifself
is primitive, andFalse
otherwise.A finite word \(w\) is primitive if it is not a positive integer power of a shorter word.
EXAMPLES:
sage: Word('1231').is_primitive() True sage: Word('111').is_primitive() False
>>> from sage.all import * >>> Word('1231').is_primitive() True >>> Word('111').is_primitive() False
- is_proper_prefix(other)[source]¶
Return
True
ifself
is a proper prefix ofother
, andFalse
otherwise.EXAMPLES:
sage: Word('12').is_proper_prefix(Word('123')) True sage: Word('12').is_proper_prefix(Word('12')) False sage: Word().is_proper_prefix(Word('123')) True sage: Word('123').is_proper_prefix(Word('12')) False sage: Word().is_proper_prefix(Word()) False
>>> from sage.all import * >>> Word('12').is_proper_prefix(Word('123')) True >>> Word('12').is_proper_prefix(Word('12')) False >>> Word().is_proper_prefix(Word('123')) True >>> Word('123').is_proper_prefix(Word('12')) False >>> Word().is_proper_prefix(Word()) False
- is_proper_suffix(other)[source]¶
Return
True
ifself
is a proper suffix ofother
, andFalse
otherwise.EXAMPLES:
sage: Word('23').is_proper_suffix(Word('123')) True sage: Word('12').is_proper_suffix(Word('12')) False sage: Word().is_proper_suffix(Word('123')) True sage: Word('123').is_proper_suffix(Word('12')) False
>>> from sage.all import * >>> Word('23').is_proper_suffix(Word('123')) True >>> Word('12').is_proper_suffix(Word('12')) False >>> Word().is_proper_suffix(Word('123')) True >>> Word('123').is_proper_suffix(Word('12')) False
- is_quasiperiodic()[source]¶
Return
True
ifself
is quasiperiodic, andFalse
otherwise.A finite or infinite word \(w\) is quasiperiodic if it can be constructed by concatenations and superpositions of one of its proper factors \(u\), which is called a quasiperiod of \(w\). See for instance [AE1993], [Mar2004], and [GLR2008].
EXAMPLES:
sage: Word('abaababaabaababaaba').is_quasiperiodic() True sage: Word('abacaba').is_quasiperiodic() False sage: Word('a').is_quasiperiodic() False sage: Word().is_quasiperiodic() False sage: Word('abaaba').is_quasiperiodic() True
>>> from sage.all import * >>> Word('abaababaabaababaaba').is_quasiperiodic() True >>> Word('abacaba').is_quasiperiodic() False >>> Word('a').is_quasiperiodic() False >>> Word().is_quasiperiodic() False >>> Word('abaaba').is_quasiperiodic() True
- is_rich(f=None)[source]¶
Return
True
ifself
has defect \(0\), andFalse
otherwise.A word is full (or rich) if its defect is zero (see [BHNR2004]).
If
f
is given, then thef
-palindromic defect is used (see [PeSt2011]).INPUT:
f
– involution (default:None
) on the alphabet ofself
; it must be callable on letters as well as words (e.g.WordMorphism
)
OUTPUT:
boolean – If
f
isNone
, whetherself
is full; otherwise, whetherself
is full off
-palindromes.EXAMPLES:
sage: words.ThueMorseWord()[:100].is_full() False sage: words.FibonacciWord()[:100].is_full() True sage: Word('000000000000000').is_full() True sage: Word('011010011001').is_full() False sage: Word('2194').is_full() True sage: Word().is_full() True
>>> from sage.all import * >>> words.ThueMorseWord()[:Integer(100)].is_full() False >>> words.FibonacciWord()[:Integer(100)].is_full() True >>> Word('000000000000000').is_full() True >>> Word('011010011001').is_full() False >>> Word('2194').is_full() True >>> Word().is_full() True
sage: f = WordMorphism('a->b,b->a') sage: Word().is_full(f) True sage: w = Word('ab') sage: w.is_full() True sage: w.is_full(f) True
>>> from sage.all import * >>> f = WordMorphism('a->b,b->a') >>> Word().is_full(f) True >>> w = Word('ab') >>> w.is_full() True >>> w.is_full(f) True
sage: f = WordMorphism('a->b,b->a') sage: Word('abab').is_full(f) True sage: Word('abba').is_full(f) False
>>> from sage.all import * >>> f = WordMorphism('a->b,b->a') >>> Word('abab').is_full(f) True >>> Word('abba').is_full(f) False
A simple example of an infinite word full of f-palindromes:
sage: p = WordMorphism({0:'abc',1:'ab'}) sage: f = WordMorphism('a->b,b->a,c->c') sage: p(words.FibonacciWord()[:50]).is_full(f) True sage: p(words.FibonacciWord()[:150]).is_full(f) True
>>> from sage.all import * >>> p = WordMorphism({Integer(0):'abc',Integer(1):'ab'}) >>> f = WordMorphism('a->b,b->a,c->c') >>> p(words.FibonacciWord()[:Integer(50)]).is_full(f) True >>> p(words.FibonacciWord()[:Integer(150)]).is_full(f) True
- is_smooth_prefix()[source]¶
Return
True
ifself
is the prefix of a smooth word, andFalse
otherwise.Let \(A_k = \{1, \ldots ,k\}\), \(k \geq 2\). An infinite word \(w\) in \(A_k^\omega\) is said to be smooth if and only if for all positive integers \(m\), \(\Delta^m(w)\) is in \(A_k^\omega\), where \(\Delta(w)\) is the word obtained from \(w\) by composing the length of consecutive runs of the same letter in \(w\). See for instance [BL2003] and [BDLV2006].
INPUT:
self
– must be a word over the integers to get something other thanFalse
OUTPUT: boolean; whether
self
is a smooth prefix or notEXAMPLES:
sage: W = Words([1, 2]) sage: W([1, 1, 2, 2, 1, 2, 1, 1]).is_smooth_prefix() True sage: W([1, 2, 1, 2, 1, 2]).is_smooth_prefix() False
>>> from sage.all import * >>> W = Words([Integer(1), Integer(2)]) >>> W([Integer(1), Integer(1), Integer(2), Integer(2), Integer(1), Integer(2), Integer(1), Integer(1)]).is_smooth_prefix() True >>> W([Integer(1), Integer(2), Integer(1), Integer(2), Integer(1), Integer(2)]).is_smooth_prefix() False
- is_square()[source]¶
Return
True
ifself
is a square, andFalse
otherwise.EXAMPLES:
sage: Word([1,0,0,1]).is_square() False sage: Word('1212').is_square() True sage: Word('1213').is_square() False sage: Word('12123').is_square() False sage: Word().is_square() True
>>> from sage.all import * >>> Word([Integer(1),Integer(0),Integer(0),Integer(1)]).is_square() False >>> Word('1212').is_square() True >>> Word('1213').is_square() False >>> Word('12123').is_square() False >>> Word().is_square() True
- is_square_free()[source]¶
Return
True
ifself
does not contain squares, andFalse
otherwise.EXAMPLES:
sage: Word('12312').is_square_free() True sage: Word('31212').is_square_free() False sage: Word().is_square_free() True
>>> from sage.all import * >>> Word('12312').is_square_free() True >>> Word('31212').is_square_free() False >>> Word().is_square_free() True
- is_sturmian_factor()[source]¶
Tell whether
self
is a factor of a Sturmian word.The finite word
self
must be defined on a two-letter alphabet.Equivalently, tells whether
self
is balanced. The advantage over theis_balanced
method is that this one runs in linear time whereasis_balanced
runs in quadratic time.OUTPUT: boolean
EXAMPLES:
sage: w = Word('0111011011011101101',alphabet='01') sage: w.is_sturmian_factor() True
>>> from sage.all import * >>> w = Word('0111011011011101101',alphabet='01') >>> w.is_sturmian_factor() True
sage: words.LowerMechanicalWord(random(),alphabet='01')[:100].is_sturmian_factor() True sage: words.CharacteristicSturmianWord(random())[:100].is_sturmian_factor() # needs sage.rings.real_mpfr True
>>> from sage.all import * >>> words.LowerMechanicalWord(random(),alphabet='01')[:Integer(100)].is_sturmian_factor() True >>> words.CharacteristicSturmianWord(random())[:Integer(100)].is_sturmian_factor() # needs sage.rings.real_mpfr True
sage: w = Word('aabb',alphabet='ab') sage: w.is_sturmian_factor() False sage: s1 = WordMorphism('a->ab,b->b') sage: s2 = WordMorphism('a->ba,b->b') sage: s3 = WordMorphism('a->a,b->ba') sage: s4 = WordMorphism('a->a,b->ab') sage: W = Words('ab') sage: w = W('ab') sage: for i in range(8): w = choice([s1,s2,s3,s4])(w) sage: w.is_sturmian_factor() True
>>> from sage.all import * >>> w = Word('aabb',alphabet='ab') >>> w.is_sturmian_factor() False >>> s1 = WordMorphism('a->ab,b->b') >>> s2 = WordMorphism('a->ba,b->b') >>> s3 = WordMorphism('a->a,b->ba') >>> s4 = WordMorphism('a->a,b->ab') >>> W = Words('ab') >>> w = W('ab') >>> for i in range(Integer(8)): w = choice([s1,s2,s3,s4])(w) >>> w.is_sturmian_factor() True
Famous words:
sage: words.FibonacciWord()[:100].is_sturmian_factor() True sage: words.ThueMorseWord()[:1000].is_sturmian_factor() False sage: words.KolakoskiWord()[:1000].is_sturmian_factor() False
>>> from sage.all import * >>> words.FibonacciWord()[:Integer(100)].is_sturmian_factor() True >>> words.ThueMorseWord()[:Integer(1000)].is_sturmian_factor() False >>> words.KolakoskiWord()[:Integer(1000)].is_sturmian_factor() False
See [Arn2002], [Ser1985], and [SU2009].
AUTHOR:
Thierry Monteil
- is_subword_of(other)[source]¶
Return
True
ifself
is a subword ofother
, andFalse
otherwise.A finite word \(u\) is a subword of a finite word \(v\) if \(u\) is a subsequence of \(v\). See Chapter 6 on Subwords in [Lot1997].
Some references define subword as a consecutive subsequence. Use
is_factor()
if this is what you need.INPUT:
other
– a finite word
EXAMPLES:
sage: Word('bb').is_subword_of(Word('ababa')) True sage: Word('bbb').is_subword_of(Word('ababa')) False
>>> from sage.all import * >>> Word('bb').is_subword_of(Word('ababa')) True >>> Word('bbb').is_subword_of(Word('ababa')) False
sage: Word().is_subword_of(Word('123')) True sage: Word('123').is_subword_of(Word('3211333213233321')) True sage: Word('321').is_subword_of(Word('11122212112122133111222332')) False
>>> from sage.all import * >>> Word().is_subword_of(Word('123')) True >>> Word('123').is_subword_of(Word('3211333213233321')) True >>> Word('321').is_subword_of(Word('11122212112122133111222332')) False
- is_suffix(other)[source]¶
Return
True
ifself
is a suffix ofother
, andFalse
otherwise.EXAMPLES:
sage: w = Word('0123456789') sage: y = Word('56789') sage: y.is_suffix(w) True sage: w.is_suffix(y) False sage: Word('579').is_suffix(w) False sage: Word().is_suffix(y) True sage: w.is_suffix(Word()) False sage: Word().is_suffix(Word()) True
>>> from sage.all import * >>> w = Word('0123456789') >>> y = Word('56789') >>> y.is_suffix(w) True >>> w.is_suffix(y) False >>> Word('579').is_suffix(w) False >>> Word().is_suffix(y) True >>> w.is_suffix(Word()) False >>> Word().is_suffix(Word()) True
- is_symmetric(f=None)[source]¶
Return
True
ifself
is symmetric (orf
-symmetric), andFalse
otherwise.A word is symmetric (resp. \(f\)-symmetric) if it is the product of two palindromes (resp. \(f\)-palindromes). See [BHNR2004] and [DeLuca2006].
INPUT:
f
– involution (default:None
) on the alphabet ofself
; it must be callable on letters as well as words (e.g.WordMorphism
)
EXAMPLES:
sage: Word('abbabab').is_symmetric() True sage: Word('ababa').is_symmetric() True sage: Word('aababaabba').is_symmetric() False sage: Word('aabbbaababba').is_symmetric() False sage: f = WordMorphism('a->b,b->a') sage: Word('aabbbaababba').is_symmetric(f) True
>>> from sage.all import * >>> Word('abbabab').is_symmetric() True >>> Word('ababa').is_symmetric() True >>> Word('aababaabba').is_symmetric() False >>> Word('aabbbaababba').is_symmetric() False >>> f = WordMorphism('a->b,b->a') >>> Word('aabbbaababba').is_symmetric(f) True
- is_tangent()[source]¶
Tell whether
self
is a tangent word.The finite word
self
must be defined on a two-letter alphabet.A binary word is said to be tangent if it can appear in infinitely many cutting sequences of a smooth curve, where each cutting sequence is observed on a progressively smaller grid.
This class of words strictly contains the class of \(1\)-balanced words, and is strictly contained in the class of \(2\)-balanced words.
This method runs in linear time.
OUTPUT: boolean
EXAMPLES:
sage: w = Word('01110110110111011101',alphabet='01') sage: w.is_tangent() True
>>> from sage.all import * >>> w = Word('01110110110111011101',alphabet='01') >>> w.is_tangent() True
Some tangent words may not be balanced:
sage: Word('aabb',alphabet='ab').is_balanced() False sage: Word('aabb',alphabet='ab').is_tangent() True
>>> from sage.all import * >>> Word('aabb',alphabet='ab').is_balanced() False >>> Word('aabb',alphabet='ab').is_tangent() True
Some \(2\)-balanced words may not be tangent:
sage: Word('aaabb',alphabet='ab').is_tangent() False sage: Word('aaabb',alphabet='ab').is_balanced(2) True
>>> from sage.all import * >>> Word('aaabb',alphabet='ab').is_tangent() False >>> Word('aaabb',alphabet='ab').is_balanced(Integer(2)) True
Famous words:
sage: words.FibonacciWord()[:100].is_tangent() True sage: words.ThueMorseWord()[:1000].is_tangent() True sage: words.KolakoskiWord()[:1000].is_tangent() False
>>> from sage.all import * >>> words.FibonacciWord()[:Integer(100)].is_tangent() True >>> words.ThueMorseWord()[:Integer(1000)].is_tangent() True >>> words.KolakoskiWord()[:Integer(1000)].is_tangent() False
See [Mon2010].
AUTHOR:
Thierry Monteil
- is_yamanouchi(n=None)[source]¶
Return whether
self
is Yamanouchi.A word \(w\) is Yamanouchi if, when read from right to left, it always has weakly more \(i\)’s than \(i+1\)’s for all \(i\) that appear in \(w\).
INPUT:
n
– (optional) an integer specifying the maximal letter in the alphabet
EXAMPLES:
sage: w = Word([1,2,4,3,2,2,2]) sage: w.is_yamanouchi() False sage: w = Word([2,3,4,3,1,2,1,1,2,1]) sage: w.is_yamanouchi() True sage: w = Word([3,1]) sage: w.is_yamanouchi(n=3) False sage: w.is_yamanouchi() True sage: w = Word([3,1],alphabet=[1,2,3]) sage: w.is_yamanouchi() False sage: w = Word([2,1,1,2]) sage: w.is_yamanouchi() False
>>> from sage.all import * >>> w = Word([Integer(1),Integer(2),Integer(4),Integer(3),Integer(2),Integer(2),Integer(2)]) >>> w.is_yamanouchi() False >>> w = Word([Integer(2),Integer(3),Integer(4),Integer(3),Integer(1),Integer(2),Integer(1),Integer(1),Integer(2),Integer(1)]) >>> w.is_yamanouchi() True >>> w = Word([Integer(3),Integer(1)]) >>> w.is_yamanouchi(n=Integer(3)) False >>> w.is_yamanouchi() True >>> w = Word([Integer(3),Integer(1)],alphabet=[Integer(1),Integer(2),Integer(3)]) >>> w.is_yamanouchi() False >>> w = Word([Integer(2),Integer(1),Integer(1),Integer(2)]) >>> w.is_yamanouchi() False
- iterated_left_palindromic_closure(f=None)[source]¶
Return the iterated left (
f
-)palindromic closure ofself
.INPUT:
f
– involution (default:None
) on the alphabet ofself
; it must be callable on letters as well as words (e.g.WordMorphism
)
OUTPUT: word; the left iterated
f
-palindromic closure ofself
EXAMPLES:
sage: Word('123').iterated_left_palindromic_closure() word: 3231323 sage: f = WordMorphism('a->b,b->a') sage: Word('ab').iterated_left_palindromic_closure(f=f) word: abbaab sage: Word('aab').iterated_left_palindromic_closure(f=f) word: abbaabbaab
>>> from sage.all import * >>> Word('123').iterated_left_palindromic_closure() word: 3231323 >>> f = WordMorphism('a->b,b->a') >>> Word('ab').iterated_left_palindromic_closure(f=f) word: abbaab >>> Word('aab').iterated_left_palindromic_closure(f=f) word: abbaabbaab
- lacunas(f=None)[source]¶
Return the list of all the lacunas of
self
.A lacuna is a position in a word where the longest (\(f\)-)palindromic suffix is not unioccurrent (see [BMBL2008]).
INPUT:
f
– involution (default:None
) on the alphabet ofself
. It must be callable on letters as well as words (e.g.WordMorphism
). The default value corresponds to usual palindromes, i.e.,f
equal to the identity.
OUTPUT: list of all the lacunas of self
EXAMPLES:
sage: w = Word([0,1,1,2,3,4,5,1,13,3]) sage: w.lacunas() [7, 9] sage: words.ThueMorseWord()[:100].lacunas() [8, 9, 24, 25, 32, 33, 34, 35, 36, 37, 38, 39, 96, 97, 98, 99] sage: f = WordMorphism({0:[1],1:[0]}) sage: words.ThueMorseWord()[:50].lacunas(f) [0, 2, 4, 12, 16, 17, 18, 19, 48, 49]
>>> from sage.all import * >>> w = Word([Integer(0),Integer(1),Integer(1),Integer(2),Integer(3),Integer(4),Integer(5),Integer(1),Integer(13),Integer(3)]) >>> w.lacunas() [7, 9] >>> words.ThueMorseWord()[:Integer(100)].lacunas() [8, 9, 24, 25, 32, 33, 34, 35, 36, 37, 38, 39, 96, 97, 98, 99] >>> f = WordMorphism({Integer(0):[Integer(1)],Integer(1):[Integer(0)]}) >>> words.ThueMorseWord()[:Integer(50)].lacunas(f) [0, 2, 4, 12, 16, 17, 18, 19, 48, 49]
- last_position_dict()[source]¶
Return a dictionary that contains the last position of each letter in
self
.EXAMPLES:
sage: Word('1231232').last_position_dict() {'1': 3, '2': 6, '3': 5}
>>> from sage.all import * >>> Word('1231232').last_position_dict() {'1': 3, '2': 6, '3': 5}
- left_special_factors(n=None)[source]¶
Return the left special factors (of length
n
).A factor \(u\) of a word \(w\) is left special if there are two distinct letters \(a\) and \(b\) such that \(au\) and \(bu\) are factors of \(w\).
INPUT:
n
– integer (default:None
); ifNone
, it returns all left special factors
OUTPUT: list of words
EXAMPLES:
sage: alpha, beta, x = 0.54, 0.294, 0.1415 sage: w = words.CodingOfRotationWord(alpha, beta, x)[:40] sage: for i in range(5): ....: print("{} {}".format(i, sorted(w.left_special_factors(i)))) 0 [word: ] 1 [word: 0] 2 [word: 00, word: 01] 3 [word: 000, word: 010] 4 [word: 0000, word: 0101]
>>> from sage.all import * >>> alpha, beta, x = RealNumber('0.54'), RealNumber('0.294'), RealNumber('0.1415') >>> w = words.CodingOfRotationWord(alpha, beta, x)[:Integer(40)] >>> for i in range(Integer(5)): ... print("{} {}".format(i, sorted(w.left_special_factors(i)))) 0 [word: ] 1 [word: 0] 2 [word: 00, word: 01] 3 [word: 000, word: 010] 4 [word: 0000, word: 0101]
- left_special_factors_iterator(n=None)[source]¶
Return an iterator over the left special factors (of length
n
).A factor \(u\) of a word \(w\) is left special if there are two distinct letters \(a\) and \(b\) such that \(au\) and \(bu\) are factors of \(w\).
INPUT:
n
– integer (default:None
); ifNone
, it returns an iterator over all left special factors
EXAMPLES:
sage: alpha, beta, x = 0.54, 0.294, 0.1415 sage: w = words.CodingOfRotationWord(alpha, beta, x)[:40] sage: sorted(w.left_special_factors_iterator(3)) [word: 000, word: 010] sage: sorted(w.left_special_factors_iterator(4)) [word: 0000, word: 0101] sage: sorted(w.left_special_factors_iterator(5)) [word: 00000, word: 01010]
>>> from sage.all import * >>> alpha, beta, x = RealNumber('0.54'), RealNumber('0.294'), RealNumber('0.1415') >>> w = words.CodingOfRotationWord(alpha, beta, x)[:Integer(40)] >>> sorted(w.left_special_factors_iterator(Integer(3))) [word: 000, word: 010] >>> sorted(w.left_special_factors_iterator(Integer(4))) [word: 0000, word: 0101] >>> sorted(w.left_special_factors_iterator(Integer(5))) [word: 00000, word: 01010]
- length_border()[source]¶
Return the length of the border of
self
.The border of a word is the longest word that is both a proper prefix and a proper suffix of
self
.EXAMPLES:
sage: Word('121').length_border() 1 sage: Word('1').length_border() 0 sage: Word('1212').length_border() 2 sage: Word('111').length_border() 2 sage: Word().length_border() is None True
>>> from sage.all import * >>> Word('121').length_border() 1 >>> Word('1').length_border() 0 >>> Word('1212').length_border() 2 >>> Word('111').length_border() 2 >>> Word().length_border() is None True
- length_maximal_palindrome(j, m=None, f=None)[source]¶
Return the length of the longest palindrome centered at position
j
.INPUT:
j
– rational; position of the symmetry axis of the palindrome. Must return an integer when doubled. It is an integer when the center of the palindrome is a letter.m
– integer (default:None
); minimal length of palindrome, if known. The parity ofm
can’t be the same as the parity of2j
.f
– involution (default:None
) on the alphabet; it must be callable on letters as well as words (e.g.WordMorphism
)
OUTPUT: length of the longest
f
-palindrome centered at positionj
EXAMPLES:
sage: Word('01001010').length_maximal_palindrome(3/2) 0 sage: Word('01101001').length_maximal_palindrome(3/2) 4 sage: Word('01010').length_maximal_palindrome(j=3, f='0->1,1->0') 0 sage: Word('01010').length_maximal_palindrome(j=2.5, f='0->1,1->0') 4 sage: Word('0222220').length_maximal_palindrome(3, f='0->1,1->0,2->2') 5
>>> from sage.all import * >>> Word('01001010').length_maximal_palindrome(Integer(3)/Integer(2)) 0 >>> Word('01101001').length_maximal_palindrome(Integer(3)/Integer(2)) 4 >>> Word('01010').length_maximal_palindrome(j=Integer(3), f='0->1,1->0') 0 >>> Word('01010').length_maximal_palindrome(j=RealNumber('2.5'), f='0->1,1->0') 4 >>> Word('0222220').length_maximal_palindrome(Integer(3), f='0->1,1->0,2->2') 5
sage: w = Word('abcdcbaxyzzyx') sage: w.length_maximal_palindrome(3) 7 sage: w.length_maximal_palindrome(3, 3) 7 sage: w.length_maximal_palindrome(3.5) 0 sage: w.length_maximal_palindrome(9.5) 6 sage: w.length_maximal_palindrome(9.5, 2) 6
>>> from sage.all import * >>> w = Word('abcdcbaxyzzyx') >>> w.length_maximal_palindrome(Integer(3)) 7 >>> w.length_maximal_palindrome(Integer(3), Integer(3)) 7 >>> w.length_maximal_palindrome(RealNumber('3.5')) 0 >>> w.length_maximal_palindrome(RealNumber('9.5')) 6 >>> w.length_maximal_palindrome(RealNumber('9.5'), Integer(2)) 6
- lengths_maximal_palindromes(f=None)[source]¶
Return the length of maximal palindromes centered at each position.
INPUT:
f
– involution (default:None
) on the alphabet ofself
; it must be callable on letters as well as words (e.g.WordMorphism
)
OUTPUT: list; the length of the maximal palindrome (or
f
-palindrome) with a given symmetry axis (letter or space between two letters)EXAMPLES:
sage: Word('01101001').lengths_maximal_palindromes() [0, 1, 0, 1, 4, 1, 0, 3, 0, 3, 0, 1, 4, 1, 0, 1, 0] sage: Word('00000').lengths_maximal_palindromes() [0, 1, 2, 3, 4, 5, 4, 3, 2, 1, 0] sage: Word('0').lengths_maximal_palindromes() [0, 1, 0] sage: Word('').lengths_maximal_palindromes() [0] sage: Word().lengths_maximal_palindromes() [0] sage: f = WordMorphism('a->b,b->a') sage: Word('abbabaab').lengths_maximal_palindromes(f) [0, 0, 2, 0, 0, 0, 2, 0, 8, 0, 2, 0, 0, 0, 2, 0, 0]
>>> from sage.all import * >>> Word('01101001').lengths_maximal_palindromes() [0, 1, 0, 1, 4, 1, 0, 3, 0, 3, 0, 1, 4, 1, 0, 1, 0] >>> Word('00000').lengths_maximal_palindromes() [0, 1, 2, 3, 4, 5, 4, 3, 2, 1, 0] >>> Word('0').lengths_maximal_palindromes() [0, 1, 0] >>> Word('').lengths_maximal_palindromes() [0] >>> Word().lengths_maximal_palindromes() [0] >>> f = WordMorphism('a->b,b->a') >>> Word('abbabaab').lengths_maximal_palindromes(f) [0, 0, 2, 0, 0, 0, 2, 0, 8, 0, 2, 0, 0, 0, 2, 0, 0]
- lengths_unioccurrent_lps(f=None)[source]¶
Return the list of the lengths of the unioccurrent longest (
f
)-palindromic suffixes (lps) for each non-empty prefix ofself.
No unioccurrent lps are indicated byNone
.It corresponds to the function \(H_w\) defined in [BMBL2008] and [BMBFLR2008].
INPUT:
f
– involution (default:None
) on the alphabet ofself
. It must be callable on letters as well as words (e.g.WordMorphism
). The default value corresponds to usual palindromes, i.e.,f
equal to the identity.
OUTPUT:
a list – list of the length of the unioccurrent longest palindromic suffix (lps) for each non-empty prefix of
self
. No unioccurrent lps are indicated byNone
.EXAMPLES:
sage: w = Word([0,1,1,2,3,4,5,1,13,3]) sage: w.lengths_unioccurrent_lps() [1, 1, 2, 1, 1, 1, 1, None, 1, None] sage: f = words.FibonacciWord()[:20] sage: f.lengths_unioccurrent_lps() == f.lps_lengths()[1:] True sage: t = words.ThueMorseWord() sage: t[:20].lengths_unioccurrent_lps() [1, 1, 2, 4, 3, 3, 2, 4, None, None, 6, 8, 10, 12, 14, 16, 6, 8, 10, 12] sage: f = WordMorphism({1:[0],0:[1]}) sage: t[:15].lengths_unioccurrent_lps(f) [None, 2, None, 2, None, 4, 6, 8, 4, 6, 4, 6, None, 4, 6]
>>> from sage.all import * >>> w = Word([Integer(0),Integer(1),Integer(1),Integer(2),Integer(3),Integer(4),Integer(5),Integer(1),Integer(13),Integer(3)]) >>> w.lengths_unioccurrent_lps() [1, 1, 2, 1, 1, 1, 1, None, 1, None] >>> f = words.FibonacciWord()[:Integer(20)] >>> f.lengths_unioccurrent_lps() == f.lps_lengths()[Integer(1):] True >>> t = words.ThueMorseWord() >>> t[:Integer(20)].lengths_unioccurrent_lps() [1, 1, 2, 4, 3, 3, 2, 4, None, None, 6, 8, 10, 12, 14, 16, 6, 8, 10, 12] >>> f = WordMorphism({Integer(1):[Integer(0)],Integer(0):[Integer(1)]}) >>> t[:Integer(15)].lengths_unioccurrent_lps(f) [None, 2, None, 2, None, 4, 6, 8, 4, 6, 4, 6, None, 4, 6]
- letters()[source]¶
Return the list of letters that appear in this word, listed in the order of first appearance.
EXAMPLES:
sage: Word([0,1,1,0,1,0,0,1]).letters() [0, 1] sage: Word("cacao").letters() ['c', 'a', 'o']
>>> from sage.all import * >>> Word([Integer(0),Integer(1),Integer(1),Integer(0),Integer(1),Integer(0),Integer(0),Integer(1)]).letters() [0, 1] >>> Word("cacao").letters() ['c', 'a', 'o']
- longest_backward_extension(x, y)[source]¶
Compute the length of the longest factor of
self
that ends atx
and that matches a factor that ends aty
.INPUT:
x
,y
– positions inself
EXAMPLES:
sage: w = Word('0011001') sage: w.longest_backward_extension(6, 2) 3 sage: w.longest_backward_extension(1, 4) 1 sage: w.longest_backward_extension(1, 3) 0
>>> from sage.all import * >>> w = Word('0011001') >>> w.longest_backward_extension(Integer(6), Integer(2)) 3 >>> w.longest_backward_extension(Integer(1), Integer(4)) 1 >>> w.longest_backward_extension(Integer(1), Integer(3)) 0
The method also accepts negative positions indicating the distance from the end of the word (in order to be consist with how negative indices work with lists). For instance, for a word of length \(7\), using positions \(6\) and \(-5\) is the same as using positions \(6\) and \(2\):
sage: w.longest_backward_extension(6, -5) 3 sage: w.longest_backward_extension(-6, 4) 1
>>> from sage.all import * >>> w.longest_backward_extension(Integer(6), -Integer(5)) 3 >>> w.longest_backward_extension(-Integer(6), Integer(4)) 1
- longest_common_subword(other)[source]¶
Return a longest subword of
self
andother
.A subword of a word is a subset of the word’s letters, read in the order in which they appear in the word.
For more information, see Wikipedia article Longest_common_subsequence_problem.
INPUT:
other
– a word
ALGORITHM:
For any indices \(i,j\), we compute the longest common subword
lcs[i,j]
ofself[:i]
andother[:j]
. This can be easily obtained as the longest oflcs[i-1,j]
lcs[i,j-1]
lcs[i-1,j-1]+self[i]
ifself[i]==other[j]
EXAMPLES:
sage: v1 = Word("abc") sage: v2 = Word("ace") sage: v1.longest_common_subword(v2) word: ac sage: w1 = Word("1010101010101010101010101010101010101010") sage: w2 = Word("0011001100110011001100110011001100110011") sage: w1.longest_common_subword(w2) word: 00110011001100110011010101010
>>> from sage.all import * >>> v1 = Word("abc") >>> v2 = Word("ace") >>> v1.longest_common_subword(v2) word: ac >>> w1 = Word("1010101010101010101010101010101010101010") >>> w2 = Word("0011001100110011001100110011001100110011") >>> w1.longest_common_subword(w2) word: 00110011001100110011010101010
See also
- longest_common_suffix(other)[source]¶
Return the longest common suffix of
self
andother
.EXAMPLES:
sage: w = Word('112345678') sage: u = Word('1115678') sage: w.longest_common_suffix(u) word: 5678 sage: u.longest_common_suffix(u) word: 1115678 sage: u.longest_common_suffix(w) word: 5678 sage: w.longest_common_suffix(w) word: 112345678 sage: y = Word('549332345') sage: w.longest_common_suffix(y) word:
>>> from sage.all import * >>> w = Word('112345678') >>> u = Word('1115678') >>> w.longest_common_suffix(u) word: 5678 >>> u.longest_common_suffix(u) word: 1115678 >>> u.longest_common_suffix(w) word: 5678 >>> w.longest_common_suffix(w) word: 112345678 >>> y = Word('549332345') >>> w.longest_common_suffix(y) word:
- longest_forward_extension(x, y)[source]¶
Compute the length of the longest factor of
self
that starts atx
and that matches a factor that starts aty
.INPUT:
x
,y
– positions inself
EXAMPLES:
sage: w = Word('0011001') sage: w.longest_forward_extension(0, 4) 3 sage: w.longest_forward_extension(0, 2) 0
>>> from sage.all import * >>> w = Word('0011001') >>> w.longest_forward_extension(Integer(0), Integer(4)) 3 >>> w.longest_forward_extension(Integer(0), Integer(2)) 0
The method also accepts negative positions indicating the distance from the end of the word (in order to be consist with how negative indices work with lists). For instance, for a word of length \(7\), using positions \(-3\) and \(2\) is the same as using positions \(4\) and \(2\):
sage: w.longest_forward_extension(1, -2) 2 sage: w.longest_forward_extension(4, -3) 3
>>> from sage.all import * >>> w.longest_forward_extension(Integer(1), -Integer(2)) 2 >>> w.longest_forward_extension(Integer(4), -Integer(3)) 3
- lps(f=None, l=None)[source]¶
Return the longest palindromic (or
f
-palindromic) suffix ofself
.INPUT:
f
– involution (default:None
) on the alphabet ofself
. It must be callable on letters as well as words (e.g.WordMorphism
)l
– integer (default:None
); the length of the longest palindrome suffix ofself[:-1]
, if known
OUTPUT: word; if
f
isNone
, the longest palindromic suffix ofself
. Otherwise, the longestf
-palindromic suffix ofself
.EXAMPLES:
sage: Word('0111').lps() word: 111 sage: Word('011101').lps() word: 101 sage: Word('6667').lps() word: 7 sage: Word('abbabaab').lps() word: baab sage: Word().lps() word: sage: f = WordMorphism('a->b,b->a') sage: Word('abbabaab').lps(f=f) word: abbabaab sage: w = Word('33412321') sage: w.lps(l=3) word: 12321 sage: Y = Word sage: w = Y('01101001') sage: w.lps(l=2) word: 1001 sage: w.lps() word: 1001 sage: w.lps(l=None) word: 1001 sage: Y().lps(l=2) Traceback (most recent call last): ... IndexError: list index out of range sage: v = Word('abbabaab') sage: pal = v[:0] sage: for i in range(1, v.length()+1): ....: pal = v[:i].lps(l=pal.length()) ....: pal word: a word: b word: bb word: abba word: bab word: aba word: aa word: baab sage: f = WordMorphism('a->b,b->a') sage: v = Word('abbabaab') sage: pal = v[:0] sage: for i in range(1, v.length()+1): ....: pal = v[:i].lps(f=f, l=pal.length()) ....: pal word: word: ab word: word: ba word: ab word: baba word: bbabaa word: abbabaab
>>> from sage.all import * >>> Word('0111').lps() word: 111 >>> Word('011101').lps() word: 101 >>> Word('6667').lps() word: 7 >>> Word('abbabaab').lps() word: baab >>> Word().lps() word: >>> f = WordMorphism('a->b,b->a') >>> Word('abbabaab').lps(f=f) word: abbabaab >>> w = Word('33412321') >>> w.lps(l=Integer(3)) word: 12321 >>> Y = Word >>> w = Y('01101001') >>> w.lps(l=Integer(2)) word: 1001 >>> w.lps() word: 1001 >>> w.lps(l=None) word: 1001 >>> Y().lps(l=Integer(2)) Traceback (most recent call last): ... IndexError: list index out of range >>> v = Word('abbabaab') >>> pal = v[:Integer(0)] >>> for i in range(Integer(1), v.length()+Integer(1)): ... pal = v[:i].lps(l=pal.length()) ... pal word: a word: b word: bb word: abba word: bab word: aba word: aa word: baab >>> f = WordMorphism('a->b,b->a') >>> v = Word('abbabaab') >>> pal = v[:Integer(0)] >>> for i in range(Integer(1), v.length()+Integer(1)): ... pal = v[:i].lps(f=f, l=pal.length()) ... pal word: word: ab word: word: ba word: ab word: baba word: bbabaa word: abbabaab
- lps_lengths(f=None)[source]¶
Return the length of the longest palindromic suffix of each prefix.
INPUT:
f
– involution (default:None
) on the alphabet ofself
. It must be callable on letters as well as words (e.g.WordMorphism
).
OUTPUT: list; the length of the longest palindromic (or
f
-palindromic) suffix of each prefix ofself
EXAMPLES:
sage: Word('01101001').lps_lengths() [0, 1, 1, 2, 4, 3, 3, 2, 4] sage: Word('00000').lps_lengths() [0, 1, 2, 3, 4, 5] sage: Word('0').lps_lengths() [0, 1] sage: Word('').lps_lengths() [0] sage: Word().lps_lengths() [0] sage: f = WordMorphism('a->b,b->a') sage: Word('abbabaab').lps_lengths(f) [0, 0, 2, 0, 2, 2, 4, 6, 8]
>>> from sage.all import * >>> Word('01101001').lps_lengths() [0, 1, 1, 2, 4, 3, 3, 2, 4] >>> Word('00000').lps_lengths() [0, 1, 2, 3, 4, 5] >>> Word('0').lps_lengths() [0, 1] >>> Word('').lps_lengths() [0] >>> Word().lps_lengths() [0] >>> f = WordMorphism('a->b,b->a') >>> Word('abbabaab').lps_lengths(f) [0, 0, 2, 0, 2, 2, 4, 6, 8]
- lyndon_factorization()[source]¶
Return the Lyndon factorization of
self
.The Lyndon factorization of a finite word \(w\) is the unique factorization of \(w\) as a non-increasing product of Lyndon words, i.e., \(w = l_1\cdots l_n\) where each \(l_i\) is a Lyndon word and \(l_1\geq \cdots \geq l_n\). See for instance [Duv1983].
OUTPUT: the list \([l_1, \ldots, l_n]\) of factors obtained
EXAMPLES:
sage: Word('010010010001000').lyndon_factorization() (01, 001, 001, 0001, 0, 0, 0) sage: Words('10')('010010010001000').lyndon_factorization() (0, 10010010001000) sage: Word('abbababbaababba').lyndon_factorization() (abb, ababb, aababb, a) sage: Words('ba')('abbababbaababba').lyndon_factorization() (a, bbababbaaba, bba) sage: Word([1,2,1,3,1,2,1]).lyndon_factorization() (1213, 12, 1)
>>> from sage.all import * >>> Word('010010010001000').lyndon_factorization() (01, 001, 001, 0001, 0, 0, 0) >>> Words('10')('010010010001000').lyndon_factorization() (0, 10010010001000) >>> Word('abbababbaababba').lyndon_factorization() (abb, ababb, aababb, a) >>> Words('ba')('abbababbaababba').lyndon_factorization() (a, bbababbaaba, bba) >>> Word([Integer(1),Integer(2),Integer(1),Integer(3),Integer(1),Integer(2),Integer(1)]).lyndon_factorization() (1213, 12, 1)
- major_index(final_descent=False)[source]¶
Return the major index of
self
.The major index of a word \(w\) is the sum of the descents of \(w\).
With the
final_descent
option, the last position of a non-empty word is also considered as a descent.See also
EXAMPLES:
sage: w = Word([2,1,3,3,2]) sage: w.major_index() 5 sage: w = Word([2,1,3,3,2]) sage: w.major_index(final_descent=True) 10
>>> from sage.all import * >>> w = Word([Integer(2),Integer(1),Integer(3),Integer(3),Integer(2)]) >>> w.major_index() 5 >>> w = Word([Integer(2),Integer(1),Integer(3),Integer(3),Integer(2)]) >>> w.major_index(final_descent=True) 10
- minimal_conjugate()[source]¶
Return the lexicographically minimal conjugate of this word (see Wikipedia article Lexicographically_minimal_string_rotation).
EXAMPLES:
sage: Word('213').minimal_conjugate() word: 132 sage: Word('11').minimal_conjugate() word: 11 sage: Word('12112').minimal_conjugate() word: 11212 sage: Word('211').minimal_conjugate() word: 112 sage: Word('211211211').minimal_conjugate() word: 112112112
>>> from sage.all import * >>> Word('213').minimal_conjugate() word: 132 >>> Word('11').minimal_conjugate() word: 11 >>> Word('12112').minimal_conjugate() word: 11212 >>> Word('211').minimal_conjugate() word: 112 >>> Word('211211211').minimal_conjugate() word: 112112112
- minimal_period()[source]¶
Return the period of
self
.Let \(A\) be an alphabet. An integer \(p\geq 1\) is a period of a word \(w=a_1a_2\cdots a_n\) where \(a_i\in A\) if \(a_i=a_{i+p}\) for \(i=1,\ldots,n-p\). The smallest period of \(w\) is called the period of \(w\). See Chapter 1 of [Lot2002].
EXAMPLES:
sage: Word('aba').minimal_period() 2 sage: Word('abab').minimal_period() 2 sage: Word('ababa').minimal_period() 2 sage: Word('ababaa').minimal_period() 5 sage: Word('ababac').minimal_period() 6 sage: Word('aaaaaa').minimal_period() 1 sage: Word('a').minimal_period() 1 sage: Word().minimal_period() 1
>>> from sage.all import * >>> Word('aba').minimal_period() 2 >>> Word('abab').minimal_period() 2 >>> Word('ababa').minimal_period() 2 >>> Word('ababaa').minimal_period() 5 >>> Word('ababac').minimal_period() 6 >>> Word('aaaaaa').minimal_period() 1 >>> Word('a').minimal_period() 1 >>> Word().minimal_period() 1
- nb_factor_occurrences_in(other)[source]¶
Return the number of times
self
appears as a factor inother
.Warning
This method is deprecated since 2020 and will be removed in a later version of SageMath. Use
number_of_factor_occurrences()
instead.EXAMPLES:
sage: Word('123').nb_factor_occurrences_in(Word('112332312313112332121123')) doctest:warning ... DeprecationWarning: f.nb_factor_occurrences_in(w) is deprecated. Use w.number_of_factor_occurrences(f) instead. See https://github.com/sagemath/sage/issues/30187 for details. 4 sage: Word('321').nb_factor_occurrences_in(Word('11233231231311233221123')) 0
>>> from sage.all import * >>> Word('123').nb_factor_occurrences_in(Word('112332312313112332121123')) doctest:warning ... DeprecationWarning: f.nb_factor_occurrences_in(w) is deprecated. Use w.number_of_factor_occurrences(f) instead. See https://github.com/sagemath/sage/issues/30187 for details. 4 >>> Word('321').nb_factor_occurrences_in(Word('11233231231311233221123')) 0
An error is raised for the empty word:
sage: Word().nb_factor_occurrences_in(Word('123')) Traceback (most recent call last): ... NotImplementedError: The factor must be non empty
>>> from sage.all import * >>> Word().nb_factor_occurrences_in(Word('123')) Traceback (most recent call last): ... NotImplementedError: The factor must be non empty
- nb_subword_occurrences_in(other)[source]¶
Return the number of times
self
appears inother
as a subword.This corresponds to the notion of \(binomial coefficient\) of two finite words whose properties are presented in the chapter of Lothaire’s book written by Sakarovitch and Simon [Lot1997].
Warning
This method is deprecated since 2020 and will be removed in a later version of SageMath. Use
number_of_subword_occurrences()
instead.INPUT:
other
– finite word
EXAMPLES:
sage: tm = words.ThueMorseWord() sage: u = Word([0,1,0,1]) sage: u.nb_subword_occurrences_in(tm[:1000]) doctest:warning ... DeprecationWarning: f.nb_subword_occurrences_in(w) is deprecated. Use w.number_of_subword_occurrences(f) instead. See https://github.com/sagemath/sage/issues/30187 for details. 2604124996 sage: u = Word([0,1,0,1,1,0]) sage: u.nb_subword_occurrences_in(tm[:100]) 20370432
>>> from sage.all import * >>> tm = words.ThueMorseWord() >>> u = Word([Integer(0),Integer(1),Integer(0),Integer(1)]) >>> u.nb_subword_occurrences_in(tm[:Integer(1000)]) doctest:warning ... DeprecationWarning: f.nb_subword_occurrences_in(w) is deprecated. Use w.number_of_subword_occurrences(f) instead. See https://github.com/sagemath/sage/issues/30187 for details. 2604124996 >>> u = Word([Integer(0),Integer(1),Integer(0),Integer(1),Integer(1),Integer(0)]) >>> u.nb_subword_occurrences_in(tm[:Integer(100)]) 20370432
Note
This code, based on [MSSY2001], actually compute the number of occurrences of all prefixes of
self
as subwords in all prefixes ofother
. In particular, its complexity is bounded bylen(self) * len(other)
.
- number_of_factor_occurrences(other)[source]¶
Return the number of times
other
appears as a factor inself
.INPUT:
other
– a non empty word
EXAMPLES:
sage: w = Word('112332312313112332121123') sage: w.number_of_factor_occurrences(Word('123')) 4 sage: w = Word('11233231231311233221123') sage: w.number_of_factor_occurrences(Word('321')) 0
>>> from sage.all import * >>> w = Word('112332312313112332121123') >>> w.number_of_factor_occurrences(Word('123')) 4 >>> w = Word('11233231231311233221123') >>> w.number_of_factor_occurrences(Word('321')) 0
sage: Word().number_of_factor_occurrences(Word('123')) 0
>>> from sage.all import * >>> Word().number_of_factor_occurrences(Word('123')) 0
An error is raised for the empty word:
sage: Word('123').number_of_factor_occurrences(Word()) Traceback (most recent call last): ... NotImplementedError: The factor must be non empty
>>> from sage.all import * >>> Word('123').number_of_factor_occurrences(Word()) Traceback (most recent call last): ... NotImplementedError: The factor must be non empty
- number_of_factors(n=None, algorithm='suffix tree')[source]¶
Count the number of distinct factors of
self
.INPUT:
n
– integer orNone
algorithm
– string (default:'suffix tree'
); takes the following values:'suffix tree'
– construct and use the suffix tree of the word'naive'
– algorithm uses a sliding window
OUTPUT:
If
n
is an integer, returns the number of distinct factors of lengthn
. Ifn
isNone
, returns the total number of distinct factors.EXAMPLES:
sage: w = Word([1,2,1,2,3]) sage: w.number_of_factors() 13 sage: [w.number_of_factors(i) for i in range(6)] [1, 3, 3, 3, 2, 1]
>>> from sage.all import * >>> w = Word([Integer(1),Integer(2),Integer(1),Integer(2),Integer(3)]) >>> w.number_of_factors() 13 >>> [w.number_of_factors(i) for i in range(Integer(6))] [1, 3, 3, 3, 2, 1]
sage: w = words.ThueMorseWord()[:100] sage: [w.number_of_factors(i) for i in range(10)] [1, 2, 4, 6, 10, 12, 16, 20, 22, 24]
>>> from sage.all import * >>> w = words.ThueMorseWord()[:Integer(100)] >>> [w.number_of_factors(i) for i in range(Integer(10))] [1, 2, 4, 6, 10, 12, 16, 20, 22, 24]
sage: Word('1213121').number_of_factors() 22 sage: Word('1213121').number_of_factors(1) 3
>>> from sage.all import * >>> Word('1213121').number_of_factors() 22 >>> Word('1213121').number_of_factors(Integer(1)) 3
sage: Word('a'*100).number_of_factors() 101 sage: Word('a'*100).number_of_factors(77) 1
>>> from sage.all import * >>> Word('a'*Integer(100)).number_of_factors() 101 >>> Word('a'*Integer(100)).number_of_factors(Integer(77)) 1
sage: Word().number_of_factors() 1 sage: Word().number_of_factors(17) 0
>>> from sage.all import * >>> Word().number_of_factors() 1 >>> Word().number_of_factors(Integer(17)) 0
sage: blueberry = Word("blueberry") sage: blueberry.number_of_factors() 43 sage: [blueberry.number_of_factors(i) for i in range(10)] [1, 6, 8, 7, 6, 5, 4, 3, 2, 1]
>>> from sage.all import * >>> blueberry = Word("blueberry") >>> blueberry.number_of_factors() 43 >>> [blueberry.number_of_factors(i) for i in range(Integer(10))] [1, 6, 8, 7, 6, 5, 4, 3, 2, 1]
- number_of_inversions()[source]¶
Return the number of inversions in
self
.An inversion of a word \(w = w_1 \ldots w_n\) is a pair of indices \((i, j)\) with \(i < j\) and \(w_i > w_j\).
See also
EXAMPLES:
sage: w = Word([2,1,3,3,2]) sage: w.number_of_inversions() 3
>>> from sage.all import * >>> w = Word([Integer(2),Integer(1),Integer(3),Integer(3),Integer(2)]) >>> w.number_of_inversions() 3
- number_of_left_special_factors(n)[source]¶
Return the number of left special factors of length \(n\).
A factor \(u\) of a word \(w\) is left special if there are two distinct letters \(a\) and \(b\) such that \(au\) and \(bu\) are factors of \(w\).
INPUT:
n
– integer
OUTPUT: nonnegative integer
EXAMPLES:
sage: w = words.FibonacciWord()[:100] sage: [w.number_of_left_special_factors(i) for i in range(10)] [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
>>> from sage.all import * >>> w = words.FibonacciWord()[:Integer(100)] >>> [w.number_of_left_special_factors(i) for i in range(Integer(10))] [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
sage: w = words.ThueMorseWord()[:100] sage: [w.number_of_left_special_factors(i) for i in range(10)] [1, 2, 2, 4, 2, 4, 4, 2, 2, 4]
>>> from sage.all import * >>> w = words.ThueMorseWord()[:Integer(100)] >>> [w.number_of_left_special_factors(i) for i in range(Integer(10))] [1, 2, 2, 4, 2, 4, 4, 2, 2, 4]
- number_of_letter_occurrences(letter)[source]¶
Return the number of occurrences of
letter
inself
.INPUT:
letter
– a letter
OUTPUT: integer
EXAMPLES:
sage: w = Word('abbabaab') sage: w.number_of_letter_occurrences('a') 4 sage: w.number_of_letter_occurrences('ab') 0
>>> from sage.all import * >>> w = Word('abbabaab') >>> w.number_of_letter_occurrences('a') 4 >>> w.number_of_letter_occurrences('ab') 0
This methods is equivalent to
list(w).count(letter)
andtuple(w).count(letter)
, thuscount
is an alias for the methodnumber_of_letter_occurrences
:sage: list(w).count('a') 4 sage: w.count('a') 4
>>> from sage.all import * >>> list(w).count('a') 4 >>> w.count('a') 4
But notice that if
s
andw
are strings,Word(s).count(w)
counts the number occurrences ofw
as a letter inWord(s)
which is not the same ass.count(w)
which counts the number of occurrences of the stringw
insides
:sage: s = 'abbabaab' sage: s.count('ab') 3 sage: Word(s).count('ab') 0
>>> from sage.all import * >>> s = 'abbabaab' >>> s.count('ab') 3 >>> Word(s).count('ab') 0
- number_of_right_special_factors(n)[source]¶
Return the number of right special factors of length
n
.A factor \(u\) of a word \(w\) is right special if there are two distinct letters \(a\) and \(b\) such that \(ua\) and \(ub\) are factors of \(w\).
INPUT:
n
– integer
OUTPUT: nonnegative integer
EXAMPLES:
sage: w = words.FibonacciWord()[:100] sage: [w.number_of_right_special_factors(i) for i in range(10)] [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
>>> from sage.all import * >>> w = words.FibonacciWord()[:Integer(100)] >>> [w.number_of_right_special_factors(i) for i in range(Integer(10))] [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
sage: w = words.ThueMorseWord()[:100] sage: [w.number_of_right_special_factors(i) for i in range(10)] [1, 2, 2, 4, 2, 4, 4, 2, 2, 4]
>>> from sage.all import * >>> w = words.ThueMorseWord()[:Integer(100)] >>> [w.number_of_right_special_factors(i) for i in range(Integer(10))] [1, 2, 2, 4, 2, 4, 4, 2, 2, 4]
- number_of_subword_occurrences(other)[source]¶
Return the number of times
other
appears inself
as a subword.This corresponds to the notion of \(binomial coefficient\) of two finite words whose properties are presented in the chapter of Lothaire’s book written by Sakarovitch and Simon [Lot1997].
INPUT:
other
– finite word
EXAMPLES:
sage: tm = words.ThueMorseWord() sage: u = Word([0,1,0,1]) sage: tm[:1000].number_of_subword_occurrences(u) 2604124996 sage: u = Word([0,1,0,1,1,0]) sage: tm[:100].number_of_subword_occurrences(u) 20370432
>>> from sage.all import * >>> tm = words.ThueMorseWord() >>> u = Word([Integer(0),Integer(1),Integer(0),Integer(1)]) >>> tm[:Integer(1000)].number_of_subword_occurrences(u) 2604124996 >>> u = Word([Integer(0),Integer(1),Integer(0),Integer(1),Integer(1),Integer(0)]) >>> tm[:Integer(100)].number_of_subword_occurrences(u) 20370432
Note
This code, based on [MSSY2001], actually compute the number of occurrences of all prefixes of
self
as subwords in all prefixes ofother
. In particular, its complexity is bounded bylen(self) * len(other)
.
- order()[source]¶
Return the order of
self
.Let \(p(w)\) be the period of a word \(w\). The positive rational number \(|w|/p(w)\) is the order of \(w\). See Chapter 8 of [Lot2002].
OUTPUT: rational; the order
EXAMPLES:
sage: Word('abaaba').order() 2 sage: Word('ababaaba').order() 8/5 sage: Word('a').order() 1 sage: Word('aa').order() 2 sage: Word().order() 0
>>> from sage.all import * >>> Word('abaaba').order() 2 >>> Word('ababaaba').order() 8/5 >>> Word('a').order() 1 >>> Word('aa').order() 2 >>> Word().order() 0
- overlap_partition(other, delay=0, p=None, involution=None)[source]¶
Return the partition of the alphabet induced by the overlap of
self
andother
with the givendelay
.The partition of the alphabet is given by the equivalence relation obtained from the symmetric, reflexive and transitive closure of the set of pairs of letters \(R_{u,v,d} = \{ (u_k, v_{k-d}) : 0 \leq k < n, 0\leq k-d < m \}\) where \(u = u_0 u_1 \cdots u_{n-1}\), \(v = v_0v_1\cdots v_{m-1}\) are two words on the alphabet \(A\) and \(d\) is an integer.
The equivalence relation defined by \(R\) is inspired from [Lab2008].
INPUT:
other
– word on the same alphabet asself
delay
– integer (default: \(0\))p
– disjoint sets data structure (default:None
), a partition of the alphabet into disjoint sets to start with. IfNone
, each letter start in distinct equivalence classes.involution
– callable (default:None
); an involution on the alphabet. Ifinvolution
is notNone
, the relation \(R_{u,v,d} \cup R_{involution(u),involution(v),d}\) is considered.
OUTPUT: a disjoint set data structure
EXAMPLES:
sage: W = Words(list('abc012345')) sage: u = W('abc') sage: v = W('01234') sage: u.overlap_partition(v) {{'0', 'a'}, {'1', 'b'}, {'2', 'c'}, {'3'}, {'4'}, {'5'}} sage: u.overlap_partition(v, 2) {{'0', 'c'}, {'1'}, {'2'}, {'3'}, {'4'}, {'5'}, {'a'}, {'b'}} sage: u.overlap_partition(v, -1) {{'0'}, {'1', 'a'}, {'2', 'b'}, {'3', 'c'}, {'4'}, {'5'}}
>>> from sage.all import * >>> W = Words(list('abc012345')) >>> u = W('abc') >>> v = W('01234') >>> u.overlap_partition(v) {{'0', 'a'}, {'1', 'b'}, {'2', 'c'}, {'3'}, {'4'}, {'5'}} >>> u.overlap_partition(v, Integer(2)) {{'0', 'c'}, {'1'}, {'2'}, {'3'}, {'4'}, {'5'}, {'a'}, {'b'}} >>> u.overlap_partition(v, -Integer(1)) {{'0'}, {'1', 'a'}, {'2', 'b'}, {'3', 'c'}, {'4'}, {'5'}}
You can re-use the same disjoint set and do more than one overlap:
sage: p = u.overlap_partition(v, 2) sage: p {{'0', 'c'}, {'1'}, {'2'}, {'3'}, {'4'}, {'5'}, {'a'}, {'b'}} sage: u.overlap_partition(v, 1, p) {{'0', '1', 'b', 'c'}, {'2'}, {'3'}, {'4'}, {'5'}, {'a'}}
>>> from sage.all import * >>> p = u.overlap_partition(v, Integer(2)) >>> p {{'0', 'c'}, {'1'}, {'2'}, {'3'}, {'4'}, {'5'}, {'a'}, {'b'}} >>> u.overlap_partition(v, Integer(1), p) {{'0', '1', 'b', 'c'}, {'2'}, {'3'}, {'4'}, {'5'}, {'a'}}
The function
overlap_partition
can be used to study equations on words. For example, if a word \(w\) overlaps itself with delay \(d\), then \(d\) is a period of \(w\):sage: W = Words(range(20)) sage: w = W(range(14)); w word: 0,1,2,3,4,5,6,7,8,9,10,11,12,13 sage: d = 5 sage: p = w.overlap_partition(w, d) sage: m = WordMorphism(p.element_to_root_dict()) sage: w2 = m(w); w2 word: 56789567895678 sage: w2.minimal_period() == d True
>>> from sage.all import * >>> W = Words(range(Integer(20))) >>> w = W(range(Integer(14))); w word: 0,1,2,3,4,5,6,7,8,9,10,11,12,13 >>> d = Integer(5) >>> p = w.overlap_partition(w, d) >>> m = WordMorphism(p.element_to_root_dict()) >>> w2 = m(w); w2 word: 56789567895678 >>> w2.minimal_period() == d True
If a word is equal to its reversal, then it is a palindrome:
sage: W = Words(range(20)) sage: w = W(range(17)); w word: 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16 sage: p = w.overlap_partition(w.reversal(), 0) sage: m = WordMorphism(p.element_to_root_dict()) sage: w2 = m(w); w2 word: 01234567876543210 sage: w2.parent() Finite words over {0, 1, 2, 3, 4, 5, 6, 7, 8, 17, 18, 19} sage: w2.is_palindrome() True
>>> from sage.all import * >>> W = Words(range(Integer(20))) >>> w = W(range(Integer(17))); w word: 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16 >>> p = w.overlap_partition(w.reversal(), Integer(0)) >>> m = WordMorphism(p.element_to_root_dict()) >>> w2 = m(w); w2 word: 01234567876543210 >>> w2.parent() Finite words over {0, 1, 2, 3, 4, 5, 6, 7, 8, 17, 18, 19} >>> w2.is_palindrome() True
If the reversal of a word \(w\) is factor of its square \(w^2\), then \(w\) is symmetric, i.e. the product of two palindromes:
sage: W = Words(range(10)) sage: w = W(range(10)); w word: 0123456789 sage: p = (w*w).overlap_partition(w.reversal(), 4) sage: m = WordMorphism(p.element_to_root_dict()) sage: w2 = m(w); w2 word: 0110456654 sage: w2.is_symmetric() True
>>> from sage.all import * >>> W = Words(range(Integer(10))) >>> w = W(range(Integer(10))); w word: 0123456789 >>> p = (w*w).overlap_partition(w.reversal(), Integer(4)) >>> m = WordMorphism(p.element_to_root_dict()) >>> w2 = m(w); w2 word: 0110456654 >>> w2.is_symmetric() True
If the image of the reversal of a word \(w\) under an involution \(f\) is factor of its square \(w^2\), then \(w\) is \(f\)-symmetric:
sage: W = Words([-11,-9,..,11]) sage: w = W([1,3,..,11]) sage: w word: 1,3,5,7,9,11 sage: inv = lambda x:-x sage: f = WordMorphism(dict( (a, inv(a)) for a in W.alphabet())) sage: p = (w*w).overlap_partition(f(w).reversal(), 2, involution=f) sage: m = WordMorphism(p.element_to_root_dict()) sage: m(w) word: 1,-1,5,7,-7,-5 sage: m(w).is_symmetric(f) True
>>> from sage.all import * >>> W = Words((ellipsis_range(-Integer(11),-Integer(9),Ellipsis,Integer(11)))) >>> w = W((ellipsis_range(Integer(1),Integer(3),Ellipsis,Integer(11)))) >>> w word: 1,3,5,7,9,11 >>> inv = lambda x:-x >>> f = WordMorphism(dict( (a, inv(a)) for a in W.alphabet())) >>> p = (w*w).overlap_partition(f(w).reversal(), Integer(2), involution=f) >>> m = WordMorphism(p.element_to_root_dict()) >>> m(w) word: 1,-1,5,7,-7,-5 >>> m(w).is_symmetric(f) True
- palindrome_prefixes()[source]¶
Return a list of all palindrome prefixes of
self
.EXAMPLES:
sage: w = Word('abaaba') sage: w.palindrome_prefixes() [word: , word: a, word: aba, word: abaaba] sage: w = Word('abbbbbbbbbb') sage: w.palindrome_prefixes() [word: , word: a]
>>> from sage.all import * >>> w = Word('abaaba') >>> w.palindrome_prefixes() [word: , word: a, word: aba, word: abaaba] >>> w = Word('abbbbbbbbbb') >>> w.palindrome_prefixes() [word: , word: a]
- palindromes(f=None)[source]¶
Return the set of all palindromic (or
f
-palindromic) factors ofself
.INPUT:
f
– involution (default:None
) on the alphabet ofself
; it must be callable on letters as well as words (e.g.WordMorphism
).
OUTPUT: a set – If
f
isNone
, the set of all palindromic factors ofself
; otherwise, the set of allf
-palindromic factors ofself
EXAMPLES:
sage: sorted(Word('01101001').palindromes()) [word: , word: 0, word: 00, word: 010, word: 0110, word: 1, word: 1001, word: 101, word: 11] sage: sorted(Word('00000').palindromes()) [word: , word: 0, word: 00, word: 000, word: 0000, word: 00000] sage: sorted(Word('0').palindromes()) [word: , word: 0] sage: sorted(Word('').palindromes()) [word: ] sage: sorted(Word().palindromes()) [word: ] sage: f = WordMorphism('a->b,b->a') sage: sorted(Word('abbabaab').palindromes(f)) [word: , word: ab, word: abbabaab, word: ba, word: baba, word: bbabaa]
>>> from sage.all import * >>> sorted(Word('01101001').palindromes()) [word: , word: 0, word: 00, word: 010, word: 0110, word: 1, word: 1001, word: 101, word: 11] >>> sorted(Word('00000').palindromes()) [word: , word: 0, word: 00, word: 000, word: 0000, word: 00000] >>> sorted(Word('0').palindromes()) [word: , word: 0] >>> sorted(Word('').palindromes()) [word: ] >>> sorted(Word().palindromes()) [word: ] >>> f = WordMorphism('a->b,b->a') >>> sorted(Word('abbabaab').palindromes(f)) [word: , word: ab, word: abbabaab, word: ba, word: baba, word: bbabaa]
- palindromic_closure(side='right', f=None)[source]¶
Return the shortest palindrome having
self
as a prefix (or as a suffix ifside
is'left'
).See [DeLuca2006].
INPUT:
side
–'right'
or'left'
(default:'right'
) the direction of the closuref
– involution (default:None
) on the alphabet ofself
; it must be callable on letters as well as words (e.g.WordMorphism
)
OUTPUT:
a word – If
f
isNone
, the right palindromic closure ofself
; otherwise, the rightf
-palindromic closure ofself
. Ifside
is'left'
, the left palindromic closure.EXAMPLES:
sage: Word('1233').palindromic_closure() word: 123321 sage: Word('12332').palindromic_closure() word: 123321 sage: Word('0110343').palindromic_closure() word: 01103430110 sage: Word('0110343').palindromic_closure(side='left') word: 3430110343 sage: Word('01105678').palindromic_closure(side='left') word: 876501105678 sage: w = Word('abbaba') sage: w.palindromic_closure() word: abbababba
>>> from sage.all import * >>> Word('1233').palindromic_closure() word: 123321 >>> Word('12332').palindromic_closure() word: 123321 >>> Word('0110343').palindromic_closure() word: 01103430110 >>> Word('0110343').palindromic_closure(side='left') word: 3430110343 >>> Word('01105678').palindromic_closure(side='left') word: 876501105678 >>> w = Word('abbaba') >>> w.palindromic_closure() word: abbababba
sage: f = WordMorphism('a->b,b->a') sage: w.palindromic_closure(f=f) word: abbabaab sage: w.palindromic_closure(f=f, side='left') word: babaabbaba
>>> from sage.all import * >>> f = WordMorphism('a->b,b->a') >>> w.palindromic_closure(f=f) word: abbabaab >>> w.palindromic_closure(f=f, side='left') word: babaabbaba
- palindromic_complexity(n)[source]¶
Return the number of distinct palindromic factors of length
n
ofself
.INPUT:
n
– the length of the factors
EXAMPLES:
sage: w = words.FibonacciWord()[:100] sage: [w.palindromic_complexity(i) for i in range(20)] [1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2]
>>> from sage.all import * >>> w = words.FibonacciWord()[:Integer(100)] >>> [w.palindromic_complexity(i) for i in range(Integer(20))] [1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2]
sage: w = words.ThueMorseWord()[:1000] sage: [w.palindromic_complexity(i) for i in range(20)] [1, 2, 2, 2, 2, 0, 4, 0, 4, 0, 4, 0, 4, 0, 2, 0, 2, 0, 4, 0]
>>> from sage.all import * >>> w = words.ThueMorseWord()[:Integer(1000)] >>> [w.palindromic_complexity(i) for i in range(Integer(20))] [1, 2, 2, 2, 2, 0, 4, 0, 4, 0, 4, 0, 4, 0, 2, 0, 2, 0, 4, 0]
- palindromic_lacunas_study(f=None)[source]¶
Return interesting statistics about longest (
f
-)palindromic suffixes and lacunas ofself
(see [BMBL2008] and [BMBFLR2008]).Note that a word \(w\) has at most \(|w| + 1\) different palindromic factors (see [DJP2001]). For \(f\)-palindromes (or pseudopalindromes or theta-palindromes), the maximum number of \(f\)-palindromic factors is \(|w|+1-g_f(w)\), where \(g_f(w)\) is the number of pairs \(\{a, f(a)\}\) such that \(a\) is a letter, \(a\) is not equal to \(f(a)\), and \(a\) or \(f(a)\) occurs in \(w\), see [Star2011].
INPUT:
f
– involution (default:None
) on the alphabet ofself
. It must be callable on letters as well as words (e.g.WordMorphism
). The default value corresponds to usual palindromes, i.e.,f
equal to the identity.
OUTPUT:
list
– list of the length of the longest palindromic suffix (lps) for each non-empty prefix ofself
list
– list of all the lacunas, i.e. positions where there is no unioccurrent lpsset
– set of palindromic factors ofself
EXAMPLES:
sage: a,b,c = Word('abbabaabbaab').palindromic_lacunas_study() sage: a [1, 1, 2, 4, 3, 3, 2, 4, 2, 4, 6, 8] sage: b [8, 9] sage: c # random order set([word: , word: b, word: bab, word: abba, word: bb, word: aa, word: baabbaab, word: baab, word: aba, word: aabbaa, word: a])
>>> from sage.all import * >>> a,b,c = Word('abbabaabbaab').palindromic_lacunas_study() >>> a [1, 1, 2, 4, 3, 3, 2, 4, 2, 4, 6, 8] >>> b [8, 9] >>> c # random order set([word: , word: b, word: bab, word: abba, word: bb, word: aa, word: baabbaab, word: baab, word: aba, word: aabbaa, word: a])
sage: f = WordMorphism('a->b,b->a') sage: a,b,c = Word('abbabaab').palindromic_lacunas_study(f=f) sage: a [0, 2, 0, 2, 2, 4, 6, 8] sage: b [0, 2, 4] sage: c # random order set([word: , word: ba, word: baba, word: ab, word: bbabaa, word: abbabaab]) sage: c == set([Word(), Word('ba'), Word('baba'), Word('ab'), Word('bbabaa'), Word('abbabaab')]) True
>>> from sage.all import * >>> f = WordMorphism('a->b,b->a') >>> a,b,c = Word('abbabaab').palindromic_lacunas_study(f=f) >>> a [0, 2, 0, 2, 2, 4, 6, 8] >>> b [0, 2, 4] >>> c # random order set([word: , word: ba, word: baba, word: ab, word: bbabaa, word: abbabaab]) >>> c == set([Word(), Word('ba'), Word('baba'), Word('ab'), Word('bbabaa'), Word('abbabaab')]) True
- periods(divide_length=False)[source]¶
Return a list containing the periods of
self
between \(1\) and \(n - 1\), where \(n\) is the length ofself
.INPUT:
divide_length
– boolean (default:False
); when set toTrue
, then only periods that divide the length ofself
are considered
OUTPUT: list of positive integers
EXAMPLES:
sage: w = Word('ababab') sage: w.periods() [2, 4] sage: w.periods(divide_length=True) [2] sage: w = Word('ababa') sage: w.periods() [2, 4] sage: w.periods(divide_length=True) []
>>> from sage.all import * >>> w = Word('ababab') >>> w.periods() [2, 4] >>> w.periods(divide_length=True) [2] >>> w = Word('ababa') >>> w.periods() [2, 4] >>> w.periods(divide_length=True) []