Algebra modules#
- class sage.categories.algebra_modules.AlgebraModules(A)[source]#
Bases:
Category_module
The category of modules over a fixed algebra \(A\).
EXAMPLES:
sage: AlgebraModules(QQ['a']) Category of algebra modules over Univariate Polynomial Ring in a over Rational Field sage: AlgebraModules(QQ['a']).super_categories() [Category of modules over Univariate Polynomial Ring in a over Rational Field]
>>> from sage.all import * >>> AlgebraModules(QQ['a']) Category of algebra modules over Univariate Polynomial Ring in a over Rational Field >>> AlgebraModules(QQ['a']).super_categories() [Category of modules over Univariate Polynomial Ring in a over Rational Field]
Note: as of now, \(A\) is required to be commutative, ensuring that the categories of left and right modules are isomorphic. Feedback and use cases for potential generalizations to the non commutative case are welcome.
- algebra()[source]#
EXAMPLES:
sage: AlgebraModules(QQ['x']).algebra() Univariate Polynomial Ring in x over Rational Field
>>> from sage.all import * >>> AlgebraModules(QQ['x']).algebra() Univariate Polynomial Ring in x over Rational Field
- classmethod an_instance()[source]#
Returns an instance of this class
EXAMPLES:
sage: AlgebraModules.an_instance() Category of algebra modules over Univariate Polynomial Ring in x over Rational Field
>>> from sage.all import * >>> AlgebraModules.an_instance() Category of algebra modules over Univariate Polynomial Ring in x over Rational Field
- super_categories()[source]#
EXAMPLES:
sage: AlgebraModules(QQ['x']).super_categories() [Category of modules over Univariate Polynomial Ring in x over Rational Field]
>>> from sage.all import * >>> AlgebraModules(QQ['x']).super_categories() [Category of modules over Univariate Polynomial Ring in x over Rational Field]