Example of a finite dimensional algebra with basis¶
- sage.categories.examples.finite_dimensional_algebras_with_basis.Example[source]¶
alias of
KroneckerQuiverPathAlgebra
- class sage.categories.examples.finite_dimensional_algebras_with_basis.KroneckerQuiverPathAlgebra(base_ring)[source]¶
Bases:
CombinatorialFreeModule
An example of a finite dimensional algebra with basis: the path algebra of the Kronecker quiver.
This class illustrates a minimal implementation of a finite dimensional algebra with basis. See
sage.quivers.algebra.PathAlgebra
for a full-featured implementation of path algebras.- algebra_generators()[source]¶
Return algebra generators for this algebra.
See also
Algebras.ParentMethods.algebra_generators()
.EXAMPLES:
sage: A = FiniteDimensionalAlgebrasWithBasis(QQ).example(); A An example of a finite dimensional algebra with basis: the path algebra of the Kronecker quiver (containing the arrows a:x->y and b:x->y) over Rational Field sage: A.algebra_generators() Finite family {'x': x, 'y': y, 'a': a, 'b': b}
>>> from sage.all import * >>> A = FiniteDimensionalAlgebrasWithBasis(QQ).example(); A An example of a finite dimensional algebra with basis: the path algebra of the Kronecker quiver (containing the arrows a:x->y and b:x->y) over Rational Field >>> A.algebra_generators() Finite family {'x': x, 'y': y, 'a': a, 'b': b}
- one()[source]¶
Return the unit of this algebra.
See also
AlgebrasWithBasis.ParentMethods.one_basis()
EXAMPLES:
sage: A = FiniteDimensionalAlgebrasWithBasis(QQ).example() sage: A.one() x + y
>>> from sage.all import * >>> A = FiniteDimensionalAlgebrasWithBasis(QQ).example() >>> A.one() x + y
- product_on_basis(w1, w2)[source]¶
Return the product of the two basis elements indexed by
w1
andw2
.See also
AlgebrasWithBasis.ParentMethods.product_on_basis()
.EXAMPLES:
sage: A = FiniteDimensionalAlgebrasWithBasis(QQ).example()
>>> from sage.all import * >>> A = FiniteDimensionalAlgebrasWithBasis(QQ).example()
Here is the multiplication table for the algebra:
sage: matrix([[p*q for q in A.basis()] for p in A.basis()]) [x 0 a b] [0 y 0 0] [0 a 0 0] [0 b 0 0]
>>> from sage.all import * >>> matrix([[p*q for q in A.basis()] for p in A.basis()]) [x 0 a b] [0 y 0 0] [0 a 0 0] [0 b 0 0]
Here we take some products of linear combinations of basis elements:
sage: x, y, a, b = A.basis() sage: a * (1-b)^2 * x 0 sage: x*a + b*y a + b sage: x*x x sage: x*y 0 sage: x*a*y a
>>> from sage.all import * >>> x, y, a, b = A.basis() >>> a * (Integer(1)-b)**Integer(2) * x 0 >>> x*a + b*y a + b >>> x*x x >>> x*y 0 >>> x*a*y a