Lie Groups¶
- class sage.categories.lie_groups.LieGroups(base, name=None)[source]¶
Bases:
Category_over_base_ring
The category of Lie groups.
A Lie group is a topological group with a smooth manifold structure.
EXAMPLES:
sage: from sage.categories.lie_groups import LieGroups sage: C = LieGroups(QQ); C Category of Lie groups over Rational Field
>>> from sage.all import * >>> from sage.categories.lie_groups import LieGroups >>> C = LieGroups(QQ); C Category of Lie groups over Rational Field
- additional_structure()[source]¶
Return
None
.Indeed, the category of Lie groups defines no new structure: a morphism of topological spaces and of smooth manifolds is a morphism as Lie groups.
See also
EXAMPLES:
sage: from sage.categories.lie_groups import LieGroups sage: LieGroups(QQ).additional_structure()
>>> from sage.all import * >>> from sage.categories.lie_groups import LieGroups >>> LieGroups(QQ).additional_structure()
- super_categories()[source]¶
EXAMPLES:
sage: from sage.categories.lie_groups import LieGroups sage: LieGroups(QQ).super_categories() [Category of topological groups, Category of smooth manifolds over Rational Field]
>>> from sage.all import * >>> from sage.categories.lie_groups import LieGroups >>> LieGroups(QQ).super_categories() [Category of topological groups, Category of smooth manifolds over Rational Field]