Finite Complex Reflection Groups#
- class sage.categories.finite_complex_reflection_groups.FiniteComplexReflectionGroups(base_category)[source]#
Bases:
CategoryWithAxiom
The category of finite complex reflection groups.
See
ComplexReflectionGroups
for the definition of complex reflection group. In the finite case, most of the information about the group can be recovered from its degrees and codegrees, and to a lesser extent to the explicit realization as subgroup of \(GL(V)\). Hence the most important optional methods to implement are:ComplexReflectionGroups.Finite.ParentMethods.degrees()
,ComplexReflectionGroups.Finite.ParentMethods.codegrees()
,ComplexReflectionGroups.Finite.ElementMethods.to_matrix()
.
Finite complex reflection groups are completely classified. In particular, if the group is irreducible, then it’s uniquely determined by its degrees and codegrees and whether it’s reflection representation is primitive or not (see [LT2009] Chapter 2.1 for the definition of primitive).
EXAMPLES:
sage: from sage.categories.complex_reflection_groups import ComplexReflectionGroups sage: ComplexReflectionGroups().Finite() Category of finite complex reflection groups sage: ComplexReflectionGroups().Finite().super_categories() [Category of complex reflection groups, Category of finite groups, Category of finite finitely generated semigroups]
>>> from sage.all import * >>> from sage.categories.complex_reflection_groups import ComplexReflectionGroups >>> ComplexReflectionGroups().Finite() Category of finite complex reflection groups >>> ComplexReflectionGroups().Finite().super_categories() [Category of complex reflection groups, Category of finite groups, Category of finite finitely generated semigroups]
An example of a finite reflection group:
sage: W = ComplexReflectionGroups().Finite().example(); W # optional - gap3 Reducible real reflection group of rank 4 and type A2 x B2 sage: W.reflections() # optional - gap3 Finite family {1: (1,8)(2,5)(9,12), 2: (1,5)(2,9)(8,12), 3: (3,10)(4,7)(11,14), 4: (3,6)(4,11)(10,13), 5: (1,9)(2,8)(5,12), 6: (4,14)(6,13)(7,11), 7: (3,13)(6,10)(7,14)}
>>> from sage.all import * >>> W = ComplexReflectionGroups().Finite().example(); W # optional - gap3 Reducible real reflection group of rank 4 and type A2 x B2 >>> W.reflections() # optional - gap3 Finite family {1: (1,8)(2,5)(9,12), 2: (1,5)(2,9)(8,12), 3: (3,10)(4,7)(11,14), 4: (3,6)(4,11)(10,13), 5: (1,9)(2,8)(5,12), 6: (4,14)(6,13)(7,11), 7: (3,13)(6,10)(7,14)}
W
is in the category of complex reflection groups:sage: W in ComplexReflectionGroups().Finite() # optional - gap3 True
>>> from sage.all import * >>> W in ComplexReflectionGroups().Finite() # optional - gap3 True
- class ElementMethods[source]#
Bases:
object
- character_value()[source]#
Return the value at
self
of the character of the reflection representation given byto_matrix()
.EXAMPLES:
sage: W = ColoredPermutations(1,3); W # needs sage.combinat 1-colored permutations of size 3 sage: [t.character_value() for t in W] # needs sage.combinat sage.groups [3, 1, 1, 0, 0, 1]
>>> from sage.all import * >>> W = ColoredPermutations(Integer(1),Integer(3)); W # needs sage.combinat 1-colored permutations of size 3 >>> [t.character_value() for t in W] # needs sage.combinat sage.groups [3, 1, 1, 0, 0, 1]
Note that this could be a different (faithful) representation than that given by the corresponding root system:
sage: W = ReflectionGroup((1,1,3)); W # optional - gap3 Irreducible real reflection group of rank 2 and type A2 sage: [t.character_value() for t in W] # optional - gap3 [2, 0, 0, -1, -1, 0] sage: W = ColoredPermutations(2,2); W # needs sage.combinat 2-colored permutations of size 2 sage: [t.character_value() for t in W] # needs sage.combinat sage.groups [2, 0, 0, -2, 0, 0, 0, 0] sage: W = ColoredPermutations(3,1); W # needs sage.combinat 3-colored permutations of size 1 sage: [t.character_value() for t in W] # needs sage.combinat sage.groups [1, zeta3, -zeta3 - 1]
>>> from sage.all import * >>> W = ReflectionGroup((Integer(1),Integer(1),Integer(3))); W # optional - gap3 Irreducible real reflection group of rank 2 and type A2 >>> [t.character_value() for t in W] # optional - gap3 [2, 0, 0, -1, -1, 0] >>> W = ColoredPermutations(Integer(2),Integer(2)); W # needs sage.combinat 2-colored permutations of size 2 >>> [t.character_value() for t in W] # needs sage.combinat sage.groups [2, 0, 0, -2, 0, 0, 0, 0] >>> W = ColoredPermutations(Integer(3),Integer(1)); W # needs sage.combinat 3-colored permutations of size 1 >>> [t.character_value() for t in W] # needs sage.combinat sage.groups [1, zeta3, -zeta3 - 1]
- reflection_length(in_unitary_group=False)[source]#
Return the reflection length of
self
.This is the minimal numbers of reflections needed to obtain
self
.INPUT:
in_unitary_group
– (default:False
) ifTrue
, the reflection length is computed in the unitary group which is the dimension of the move space ofself
EXAMPLES:
sage: W = ReflectionGroup((1,1,3)) # optional - gap3 sage: sorted([t.reflection_length() for t in W]) # optional - gap3 [0, 1, 1, 1, 2, 2] sage: W = ReflectionGroup((2,1,2)) # optional - gap3 sage: sorted([t.reflection_length() for t in W]) # optional - gap3 [0, 1, 1, 1, 1, 2, 2, 2] sage: W = ReflectionGroup((2,2,2)) # optional - gap3 sage: sorted([t.reflection_length() for t in W]) # optional - gap3 [0, 1, 1, 2] sage: W = ReflectionGroup((3,1,2)) # optional - gap3 sage: sorted([t.reflection_length() for t in W]) # optional - gap3 [0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]
>>> from sage.all import * >>> W = ReflectionGroup((Integer(1),Integer(1),Integer(3))) # optional - gap3 >>> sorted([t.reflection_length() for t in W]) # optional - gap3 [0, 1, 1, 1, 2, 2] >>> W = ReflectionGroup((Integer(2),Integer(1),Integer(2))) # optional - gap3 >>> sorted([t.reflection_length() for t in W]) # optional - gap3 [0, 1, 1, 1, 1, 2, 2, 2] >>> W = ReflectionGroup((Integer(2),Integer(2),Integer(2))) # optional - gap3 >>> sorted([t.reflection_length() for t in W]) # optional - gap3 [0, 1, 1, 2] >>> W = ReflectionGroup((Integer(3),Integer(1),Integer(2))) # optional - gap3 >>> sorted([t.reflection_length() for t in W]) # optional - gap3 [0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]
- to_matrix()[source]#
Return the matrix presentation of
self
acting on a vector space \(V\).EXAMPLES:
sage: W = ReflectionGroup((1,1,3)) # optional - gap3 sage: [t.to_matrix() for t in W] # optional - gap3 [ [1 0] [ 1 1] [-1 0] [-1 -1] [ 0 1] [ 0 -1] [0 1], [ 0 -1], [ 1 1], [ 1 0], [-1 -1], [-1 0] ] sage: W = ColoredPermutations(1,3) # needs sage.combinat sage: [t.to_matrix() for t in W] # needs sage.combinat sage.groups [ [1 0 0] [1 0 0] [0 1 0] [0 0 1] [0 1 0] [0 0 1] [0 1 0] [0 0 1] [1 0 0] [1 0 0] [0 0 1] [0 1 0] [0 0 1], [0 1 0], [0 0 1], [0 1 0], [1 0 0], [1 0 0] ]
>>> from sage.all import * >>> W = ReflectionGroup((Integer(1),Integer(1),Integer(3))) # optional - gap3 >>> [t.to_matrix() for t in W] # optional - gap3 [ [1 0] [ 1 1] [-1 0] [-1 -1] [ 0 1] [ 0 -1] [0 1], [ 0 -1], [ 1 1], [ 1 0], [-1 -1], [-1 0] ] >>> W = ColoredPermutations(Integer(1),Integer(3)) # needs sage.combinat >>> [t.to_matrix() for t in W] # needs sage.combinat sage.groups [ [1 0 0] [1 0 0] [0 1 0] [0 0 1] [0 1 0] [0 0 1] [0 1 0] [0 0 1] [1 0 0] [1 0 0] [0 0 1] [0 1 0] [0 0 1], [0 1 0], [0 0 1], [0 1 0], [1 0 0], [1 0 0] ]
A different representation is given by the colored permutations:
sage: W = ColoredPermutations(3, 1) # needs sage.combinat sage: [t.to_matrix() for t in W] # needs sage.combinat sage.groups [[1], [zeta3], [-zeta3 - 1]]
>>> from sage.all import * >>> W = ColoredPermutations(Integer(3), Integer(1)) # needs sage.combinat >>> [t.to_matrix() for t in W] # needs sage.combinat sage.groups [[1], [zeta3], [-zeta3 - 1]]
- class Irreducible(base_category)[source]#
Bases:
CategoryWithAxiom
- class ParentMethods[source]#
Bases:
object
- absolute_order_ideal(gens=None, in_unitary_group=True, return_lengths=False)[source]#
Return all elements in
self
below given elements in the absolute order ofself
.This order is defined by
\[\omega \leq_R \tau \Leftrightarrow \ell_R(\omega) + \ell_R(\omega^{-1} \tau) = \ell_R(\tau),\]where \(\ell_R\) denotes the reflection length.
This is, if
in_unitary_group
isFalse
, then\[\ell_R(w) = \min\{ \ell: w = r_1\cdots r_\ell, r_i \in R \},\]and otherwise
\[\ell_R(w) = \dim\operatorname{im}(w - 1).\]Note
If
gens
are not given,self
is assumed to be well-generated.INPUT:
gens
– (default:None
) if one or more elements are given, the order ideal in the absolute order generated bygens
is returned. Otherwise, the standard Coxeter element is used as unique maximal element.in_unitary_group
(default:True
) determines the length function used to compute the order. For real groups, both possible orders coincide, and for complex non-real groups, the order in the unitary group is much faster to compute.return_lengths
(default:False
) whether or not to also return the lengths of the elements.
EXAMPLES:
sage: # optional - gap3 sage: W = ReflectionGroup((1,1,3)) sage: sorted(w.reduced_word() ....: for w in W.absolute_order_ideal()) [[], [1], [1, 2], [1, 2, 1], [2]] sage: sorted(w.reduced_word() ....: for w in W.absolute_order_ideal(W.from_reduced_word([2,1]))) [[], [1], [1, 2, 1], [2], [2, 1]] sage: sorted(w.reduced_word() ....: for w in W.absolute_order_ideal(W.from_reduced_word([2]))) [[], [2]] sage: W = CoxeterGroup(['A', 3]) # needs sage.combinat sage.groups sage: len(list(W.absolute_order_ideal())) # needs sage.combinat sage.groups 14 sage: W = CoxeterGroup(['A', 2]) # needs sage.combinat sage.groups sage: for (w, l) in W.absolute_order_ideal(return_lengths=True): # needs sage.combinat sage.groups ....: print(w.reduced_word(), l) [1, 2] 2 [1, 2, 1] 1 [2] 1 [1] 1 [] 0
>>> from sage.all import * >>> # optional - gap3 >>> W = ReflectionGroup((Integer(1),Integer(1),Integer(3))) >>> sorted(w.reduced_word() ... for w in W.absolute_order_ideal()) [[], [1], [1, 2], [1, 2, 1], [2]] >>> sorted(w.reduced_word() ... for w in W.absolute_order_ideal(W.from_reduced_word([Integer(2),Integer(1)]))) [[], [1], [1, 2, 1], [2], [2, 1]] >>> sorted(w.reduced_word() ... for w in W.absolute_order_ideal(W.from_reduced_word([Integer(2)]))) [[], [2]] >>> W = CoxeterGroup(['A', Integer(3)]) # needs sage.combinat sage.groups >>> len(list(W.absolute_order_ideal())) # needs sage.combinat sage.groups 14 >>> W = CoxeterGroup(['A', Integer(2)]) # needs sage.combinat sage.groups >>> for (w, l) in W.absolute_order_ideal(return_lengths=True): # needs sage.combinat sage.groups ... print(w.reduced_word(), l) [1, 2] 2 [1, 2, 1] 1 [2] 1 [1] 1 [] 0
- absolute_poset(in_unitary_group=False)[source]#
Return the poset induced by the absolute order of
self
as a finite lattice.INPUT:
in_unitary_group
– (default:False
) ifFalse
, the relation is given by\sigma \leq \tau
if \(l_R(\sigma) + l_R(\sigma^{-1}\tau) = l_R(\tau)\) IfTrue
, the relation is given by \(\sigma \leq \tau\) if \(\dim(\mathrm{Fix}(\sigma)) + \dim(\mathrm{Fix}(\sigma^{-1}\tau)) = \dim(\mathrm{Fix}(\tau))\)
See also
EXAMPLES:
sage: P = ReflectionGroup((1,1,3)).absolute_poset(); P # optional - gap3 Finite poset containing 6 elements sage: sorted(w.reduced_word() for w in P) # optional - gap3 [[], [1], [1, 2], [1, 2, 1], [2], [2, 1]] sage: W = ReflectionGroup(4); W # optional - gap3 Irreducible complex reflection group of rank 2 and type ST4 sage: W.absolute_poset() # optional - gap3 Finite poset containing 24 elements
>>> from sage.all import * >>> P = ReflectionGroup((Integer(1),Integer(1),Integer(3))).absolute_poset(); P # optional - gap3 Finite poset containing 6 elements >>> sorted(w.reduced_word() for w in P) # optional - gap3 [[], [1], [1, 2], [1, 2, 1], [2], [2, 1]] >>> W = ReflectionGroup(Integer(4)); W # optional - gap3 Irreducible complex reflection group of rank 2 and type ST4 >>> W.absolute_poset() # optional - gap3 Finite poset containing 24 elements
- coxeter_number()[source]#
Return the Coxeter number of an irreducible reflection group.
This is defined as \(\frac{N + N^*}{n}\) where \(N\) is the number of reflections, \(N^*\) is the number of reflection hyperplanes, and \(n\) is the rank of
self
.EXAMPLES:
sage: W = ReflectionGroup(31) # optional - gap3 sage: W.coxeter_number() # optional - gap3 30
>>> from sage.all import * >>> W = ReflectionGroup(Integer(31)) # optional - gap3 >>> W.coxeter_number() # optional - gap3 30
- generalized_noncrossing_partitions(m, c=None, positive=False)[source]#
Return the set of all chains of length
m
in the noncrossing partition lattice ofself
, seenoncrossing_partition_lattice()
.Note
self
is assumed to be well-generated.INPUT:
c
– (default:None
) if an elementc
inself
is given, it is used as the maximal element in the intervalpositive
– (default:False
) ifTrue
, only those generalized noncrossing partitions of full support are returned
EXAMPLES:
sage: W = ReflectionGroup((1,1,3)) # optional - gap3 sage: chains = W.generalized_noncrossing_partitions(2) # optional - gap3 sage: sorted([w.reduced_word() for w in chain] # optional - gap3 ....: for chain in chains) [[[], [], [1, 2]], [[], [1], [2]], [[], [1, 2], []], [[], [1, 2, 1], [1]], [[], [2], [1, 2, 1]], [[1], [], [2]], [[1], [2], []], [[1, 2], [], []], [[1, 2, 1], [], [1]], [[1, 2, 1], [1], []], [[2], [], [1, 2, 1]], [[2], [1, 2, 1], []]] sage: chains = W.generalized_noncrossing_partitions(2, # optional - gap3 ....: positive=True) sage: sorted([w.reduced_word() for w in chain] # optional - gap3 ....: for chain in chains) [[[], [1, 2], []], [[], [1, 2, 1], [1]], [[1], [2], []], [[1, 2], [], []], [[1, 2, 1], [], [1]], [[1, 2, 1], [1], []], [[2], [1, 2, 1], []]]
>>> from sage.all import * >>> W = ReflectionGroup((Integer(1),Integer(1),Integer(3))) # optional - gap3 >>> chains = W.generalized_noncrossing_partitions(Integer(2)) # optional - gap3 >>> sorted([w.reduced_word() for w in chain] # optional - gap3 ... for chain in chains) [[[], [], [1, 2]], [[], [1], [2]], [[], [1, 2], []], [[], [1, 2, 1], [1]], [[], [2], [1, 2, 1]], [[1], [], [2]], [[1], [2], []], [[1, 2], [], []], [[1, 2, 1], [], [1]], [[1, 2, 1], [1], []], [[2], [], [1, 2, 1]], [[2], [1, 2, 1], []]] >>> chains = W.generalized_noncrossing_partitions(Integer(2), # optional - gap3 ... positive=True) >>> sorted([w.reduced_word() for w in chain] # optional - gap3 ... for chain in chains) [[[], [1, 2], []], [[], [1, 2, 1], [1]], [[1], [2], []], [[1, 2], [], []], [[1, 2, 1], [], [1]], [[1, 2, 1], [1], []], [[2], [1, 2, 1], []]]
- noncrossing_partition_lattice(c=None, L=None, in_unitary_group=True)[source]#
Return the interval \([1,c]\) in the absolute order of
self
as a finite lattice.See also
INPUT:
c
– (default:None
) if an elementc
inself
is given, it is used as the maximal element in the intervalL
– (default:None
) if a subsetL
(must be hashable!) ofself
is given, it is used as the underlying set (only cover relations are checked).in_unitary_group
– (default:False
) ifFalse
, the relation is given by \(\sigma \leq \tau\) if \(l_R(\sigma) + l_R(\sigma^{-1}\tau) = l_R(\tau)\); ifTrue
, the relation is given by \(\sigma \leq \tau\) if \(\dim(\mathrm{Fix}(\sigma)) + \dim(\mathrm{Fix}(\sigma^{-1}\tau)) = \dim(\mathrm{Fix}(\tau))\)
Note
If
L
is given, the parameterc
is ignored.EXAMPLES:
sage: W = SymmetricGroup(4) # needs sage.groups sage: W.noncrossing_partition_lattice() # needs sage.combinat sage.groups Finite lattice containing 14 elements sage: W = WeylGroup(['G', 2]) # needs sage.combinat sage.groups sage: W.noncrossing_partition_lattice() # needs sage.combinat sage.groups Finite lattice containing 8 elements sage: # optional - gap3 sage: W = ReflectionGroup((1,1,3)) sage: sorted(w.reduced_word() ....: for w in W.noncrossing_partition_lattice()) [[], [1], [1, 2], [1, 2, 1], [2]] sage: c21 = W.from_reduced_word([2,1]) sage: sorted(w.reduced_word() ....: for w in W.noncrossing_partition_lattice(c21)) [[], [1], [1, 2, 1], [2], [2, 1]] sage: c2 = W.from_reduced_word([2]) sage: sorted(w.reduced_word() ....: for w in W.noncrossing_partition_lattice(c2)) [[], [2]]
>>> from sage.all import * >>> W = SymmetricGroup(Integer(4)) # needs sage.groups >>> W.noncrossing_partition_lattice() # needs sage.combinat sage.groups Finite lattice containing 14 elements >>> W = WeylGroup(['G', Integer(2)]) # needs sage.combinat sage.groups >>> W.noncrossing_partition_lattice() # needs sage.combinat sage.groups Finite lattice containing 8 elements >>> # optional - gap3 >>> W = ReflectionGroup((Integer(1),Integer(1),Integer(3))) >>> sorted(w.reduced_word() ... for w in W.noncrossing_partition_lattice()) [[], [1], [1, 2], [1, 2, 1], [2]] >>> c21 = W.from_reduced_word([Integer(2),Integer(1)]) >>> sorted(w.reduced_word() ... for w in W.noncrossing_partition_lattice(c21)) [[], [1], [1, 2, 1], [2], [2, 1]] >>> c2 = W.from_reduced_word([Integer(2)]) >>> sorted(w.reduced_word() ... for w in W.noncrossing_partition_lattice(c2)) [[], [2]]
- example()[source]#
Return an example of an irreducible complex reflection group.
EXAMPLES:
sage: from sage.categories.complex_reflection_groups import ComplexReflectionGroups sage: C = ComplexReflectionGroups().Finite().Irreducible() sage: C.example() # optional - gap3 Irreducible complex reflection group of rank 3 and type G(4,2,3)
>>> from sage.all import * >>> from sage.categories.complex_reflection_groups import ComplexReflectionGroups >>> C = ComplexReflectionGroups().Finite().Irreducible() >>> C.example() # optional - gap3 Irreducible complex reflection group of rank 3 and type G(4,2,3)
- class ParentMethods[source]#
Bases:
object
- base_change_matrix()[source]#
Return the base change from the standard basis of the vector space of
self
to the basis given by the independent roots ofself
.Todo
For non-well-generated groups there is a conflict with construction of the matrix for an element.
EXAMPLES:
sage: W = ReflectionGroup((1,1,3)) # optional - gap3 sage: W.base_change_matrix() # optional - gap3 [1 0] [0 1] sage: W = ReflectionGroup(23) # optional - gap3 sage: W.base_change_matrix() # optional - gap3 [1 0 0] [0 1 0] [0 0 1] sage: W = ReflectionGroup((3,1,2)) # optional - gap3 sage: W.base_change_matrix() # optional - gap3 [1 0] [1 1] sage: W = ReflectionGroup((4,2,2)) # optional - gap3 sage: W.base_change_matrix() # optional - gap3 [ 1 0] [E(4) 1]
>>> from sage.all import * >>> W = ReflectionGroup((Integer(1),Integer(1),Integer(3))) # optional - gap3 >>> W.base_change_matrix() # optional - gap3 [1 0] [0 1] >>> W = ReflectionGroup(Integer(23)) # optional - gap3 >>> W.base_change_matrix() # optional - gap3 [1 0 0] [0 1 0] [0 0 1] >>> W = ReflectionGroup((Integer(3),Integer(1),Integer(2))) # optional - gap3 >>> W.base_change_matrix() # optional - gap3 [1 0] [1 1] >>> W = ReflectionGroup((Integer(4),Integer(2),Integer(2))) # optional - gap3 >>> W.base_change_matrix() # optional - gap3 [ 1 0] [E(4) 1]
- cardinality()[source]#
Return the cardinality of
self
.It is given by the product of the degrees of
self
.EXAMPLES:
sage: # needs sage.combinat sage.groups sage: W = ColoredPermutations(1,3) sage: W.cardinality() 6 sage: W = ColoredPermutations(2,3) sage: W.cardinality() 48 sage: W = ColoredPermutations(4,3) sage: W.cardinality() 384 sage: # optional - gap3, needs sage.combinat sage.groups sage: W = ReflectionGroup((4,2,3)) sage: W.cardinality() 192
>>> from sage.all import * >>> # needs sage.combinat sage.groups >>> W = ColoredPermutations(Integer(1),Integer(3)) >>> W.cardinality() 6 >>> W = ColoredPermutations(Integer(2),Integer(3)) >>> W.cardinality() 48 >>> W = ColoredPermutations(Integer(4),Integer(3)) >>> W.cardinality() 384 >>> # optional - gap3, needs sage.combinat sage.groups >>> W = ReflectionGroup((Integer(4),Integer(2),Integer(3))) >>> W.cardinality() 192
- codegrees()[source]#
Return the codegrees of
self
.OUTPUT: a tuple of Sage integers
EXAMPLES:
sage: W = ColoredPermutations(1,4) # needs sage.combinat sage: W.codegrees() # needs sage.combinat (2, 1, 0) sage: W = ColoredPermutations(3,3) # needs sage.combinat sage: W.codegrees() # needs sage.combinat (6, 3, 0) sage: W = ReflectionGroup(31) # optional - gap3 sage: W.codegrees() # optional - gap3 (28, 16, 12, 0)
>>> from sage.all import * >>> W = ColoredPermutations(Integer(1),Integer(4)) # needs sage.combinat >>> W.codegrees() # needs sage.combinat (2, 1, 0) >>> W = ColoredPermutations(Integer(3),Integer(3)) # needs sage.combinat >>> W.codegrees() # needs sage.combinat (6, 3, 0) >>> W = ReflectionGroup(Integer(31)) # optional - gap3 >>> W.codegrees() # optional - gap3 (28, 16, 12, 0)
- degrees()[source]#
Return the degrees of
self
.OUTPUT: a tuple of Sage integers
EXAMPLES:
sage: W = ColoredPermutations(1,4) # needs sage.combinat sage: W.degrees() # needs sage.combinat (2, 3, 4) sage: W = ColoredPermutations(3,3) # needs sage.combinat sage: W.degrees() # needs sage.combinat (3, 6, 9) sage: W = ReflectionGroup(31) # optional - gap3 sage: W.degrees() # optional - gap3 (8, 12, 20, 24)
>>> from sage.all import * >>> W = ColoredPermutations(Integer(1),Integer(4)) # needs sage.combinat >>> W.degrees() # needs sage.combinat (2, 3, 4) >>> W = ColoredPermutations(Integer(3),Integer(3)) # needs sage.combinat >>> W.degrees() # needs sage.combinat (3, 6, 9) >>> W = ReflectionGroup(Integer(31)) # optional - gap3 >>> W.degrees() # optional - gap3 (8, 12, 20, 24)
- is_real()[source]#
Return whether
self
is real.A complex reflection group is real if it is isomorphic to a reflection group in \(GL(V)\) over a real vector space \(V\). Equivalently its character table has real entries.
This implementation uses the following statement: an irreducible complex reflection group is real if and only if \(2\) is a degree of
self
with multiplicity one. Hence, in general we just need to compare the number of occurrences of \(2\) as degree ofself
and the number of irreducible components.EXAMPLES:
sage: W = ColoredPermutations(1,3) # needs sage.combinat sage: W.is_real() # needs sage.combinat True sage: W = ColoredPermutations(4,3) # needs sage.combinat sage: W.is_real() # needs sage.combinat sage.graphs False
>>> from sage.all import * >>> W = ColoredPermutations(Integer(1),Integer(3)) # needs sage.combinat >>> W.is_real() # needs sage.combinat True >>> W = ColoredPermutations(Integer(4),Integer(3)) # needs sage.combinat >>> W.is_real() # needs sage.combinat sage.graphs False
Todo
Add an example of non real finite complex reflection group that is generated by order 2 reflections.
- is_well_generated()[source]#
Return whether
self
is well-generated.A finite complex reflection group is well generated if the number of its simple reflections coincides with its rank.
See also
ComplexReflectionGroups.Finite.WellGenerated()
Note
All finite real reflection groups are well generated.
The complex reflection groups of type \(G(r,1,n)\) and of type \(G(r,r,n)\) are well generated.
The complex reflection groups of type \(G(r,p,n)\) with \(1 < p < r\) are not well generated.
The direct product of two well generated finite complex reflection group is still well generated.
EXAMPLES:
sage: W = ColoredPermutations(1,3) # needs sage.combinat sage: W.is_well_generated() # needs sage.combinat True sage: W = ColoredPermutations(4,3) # needs sage.combinat sage: W.is_well_generated() # needs sage.combinat True sage: # optional - gap3, needs sage.combinat sage.groups sage: W = ReflectionGroup((4,2,3)) sage: W.is_well_generated() False sage: W = ReflectionGroup((4,4,3)) sage: W.is_well_generated() True
>>> from sage.all import * >>> W = ColoredPermutations(Integer(1),Integer(3)) # needs sage.combinat >>> W.is_well_generated() # needs sage.combinat True >>> W = ColoredPermutations(Integer(4),Integer(3)) # needs sage.combinat >>> W.is_well_generated() # needs sage.combinat True >>> # optional - gap3, needs sage.combinat sage.groups >>> W = ReflectionGroup((Integer(4),Integer(2),Integer(3))) >>> W.is_well_generated() False >>> W = ReflectionGroup((Integer(4),Integer(4),Integer(3))) >>> W.is_well_generated() True
- milnor_fiber_poset()[source]#
Return the Milnor fiber poset of
self
.The Milnor fiber poset of a finite complex reflection group \(W\) is defined as the poset of (right) standard cosets \(gW_J\), where \(J\) is a subset of the index set \(I\) of \(W\), ordered by reverse inclusion. This is conjecturally a meet semilattice if and only if \(W\) is well-generated.
EXAMPLES:
sage: # needs sage.combinat sage: W = ColoredPermutations(3, 2) sage: P = W.milnor_fiber_poset() sage: P Finite meet-semilattice containing 34 elements sage: R.<x> = ZZ[] sage: sum(x**P.rank(elt) for elt in P) 18*x^2 + 15*x + 1 sage: # optional - gap3 sage: W = ReflectionGroup(4) sage: P = W.milnor_fiber_poset(); P Finite meet-semilattice containing 41 elements sage: sum(x**P.rank(elt) for elt in P) 24*x^2 + 16*x + 1 sage: # optional - gap3 sage: W = ReflectionGroup([4,2,2]) sage: W.is_well_generated() False sage: P = W.milnor_fiber_poset(); P Finite poset containing 47 elements sage: sum(x**P.rank(elt) for elt in P) 16*x^3 + 24*x^2 + 6*x + 1 sage: P.is_meet_semilattice() False
>>> from sage.all import * >>> # needs sage.combinat >>> W = ColoredPermutations(Integer(3), Integer(2)) >>> P = W.milnor_fiber_poset() >>> P Finite meet-semilattice containing 34 elements >>> R = ZZ['x']; (x,) = R._first_ngens(1) >>> sum(x**P.rank(elt) for elt in P) 18*x^2 + 15*x + 1 >>> # optional - gap3 >>> W = ReflectionGroup(Integer(4)) >>> P = W.milnor_fiber_poset(); P Finite meet-semilattice containing 41 elements >>> sum(x**P.rank(elt) for elt in P) 24*x^2 + 16*x + 1 >>> # optional - gap3 >>> W = ReflectionGroup([Integer(4),Integer(2),Integer(2)]) >>> W.is_well_generated() False >>> P = W.milnor_fiber_poset(); P Finite poset containing 47 elements >>> sum(x**P.rank(elt) for elt in P) 16*x^3 + 24*x^2 + 6*x + 1 >>> P.is_meet_semilattice() False
- number_of_reflection_hyperplanes()[source]#
Return the number of reflection hyperplanes of
self
.This is also the number of distinguished reflections. For real groups, this coincides with the number of reflections.
This implementation uses that it is given by the sum of the codegrees of
self
plus its rank.See also
EXAMPLES:
sage: # needs sage.combinat sage: W = ColoredPermutations(1,3) sage: W.number_of_reflection_hyperplanes() 3 sage: W = ColoredPermutations(2,3) sage: W.number_of_reflection_hyperplanes() 9 sage: W = ColoredPermutations(4,3) sage: W.number_of_reflection_hyperplanes() 15 sage: # optional - gap3, needs sage.combinat sage: W = ReflectionGroup((4,2,3)) sage: W.number_of_reflection_hyperplanes() 15
>>> from sage.all import * >>> # needs sage.combinat >>> W = ColoredPermutations(Integer(1),Integer(3)) >>> W.number_of_reflection_hyperplanes() 3 >>> W = ColoredPermutations(Integer(2),Integer(3)) >>> W.number_of_reflection_hyperplanes() 9 >>> W = ColoredPermutations(Integer(4),Integer(3)) >>> W.number_of_reflection_hyperplanes() 15 >>> # optional - gap3, needs sage.combinat >>> W = ReflectionGroup((Integer(4),Integer(2),Integer(3))) >>> W.number_of_reflection_hyperplanes() 15
- number_of_reflections()[source]#
Return the number of reflections of
self
.For real groups, this coincides with the number of reflection hyperplanes.
This implementation uses that it is given by the sum of the degrees of
self
minus its rank.See also
EXAMPLES:
sage: [SymmetricGroup(i).number_of_reflections() # needs sage.groups sage.rings.number_field ....: for i in range(int(8))] [0, 0, 1, 3, 6, 10, 15, 21] sage: # needs sage.combinat sage.groups sage: W = ColoredPermutations(1,3) sage: W.number_of_reflections() 3 sage: W = ColoredPermutations(2,3) sage: W.number_of_reflections() 9 sage: W = ColoredPermutations(4,3) sage: W.number_of_reflections() 21 sage: W = ReflectionGroup((4,2,3)) # optional - gap3 sage: W.number_of_reflections() # optional - gap3 15
>>> from sage.all import * >>> [SymmetricGroup(i).number_of_reflections() # needs sage.groups sage.rings.number_field ... for i in range(int(Integer(8)))] [0, 0, 1, 3, 6, 10, 15, 21] >>> # needs sage.combinat sage.groups >>> W = ColoredPermutations(Integer(1),Integer(3)) >>> W.number_of_reflections() 3 >>> W = ColoredPermutations(Integer(2),Integer(3)) >>> W.number_of_reflections() 9 >>> W = ColoredPermutations(Integer(4),Integer(3)) >>> W.number_of_reflections() 21 >>> W = ReflectionGroup((Integer(4),Integer(2),Integer(3))) # optional - gap3 >>> W.number_of_reflections() # optional - gap3 15
- rank()[source]#
Return the rank of
self
.The rank of
self
is the dimension of the smallest faithfull reflection representation ofself
.This default implementation uses that the rank is the number of
degrees()
.See also
ComplexReflectionGroups.rank()
EXAMPLES:
sage: # needs sage.combinat sage.groups sage: W = ColoredPermutations(1,3) sage: W.rank() 2 sage: W = ColoredPermutations(2,3) sage: W.rank() 3 sage: W = ColoredPermutations(4,3) sage: W.rank() 3 sage: # optional - gap3, needs sage.combinat sage.groups sage: W = ReflectionGroup((4,2,3)) sage: W.rank() 3
>>> from sage.all import * >>> # needs sage.combinat sage.groups >>> W = ColoredPermutations(Integer(1),Integer(3)) >>> W.rank() 2 >>> W = ColoredPermutations(Integer(2),Integer(3)) >>> W.rank() 3 >>> W = ColoredPermutations(Integer(4),Integer(3)) >>> W.rank() 3 >>> # optional - gap3, needs sage.combinat sage.groups >>> W = ReflectionGroup((Integer(4),Integer(2),Integer(3))) >>> W.rank() 3
- class SubcategoryMethods[source]#
Bases:
object
- WellGenerated()[source]#
Return the full subcategory of well-generated objects of
self
.A finite complex generated group is well generated if it is isomorphic to a subgroup of the general linear group \(GL_n\) generated by \(n\) reflections.
See also
ComplexReflectionGroups.Finite.ParentMethods.is_well_generated()
EXAMPLES:
sage: from sage.categories.complex_reflection_groups import ComplexReflectionGroups sage: C = ComplexReflectionGroups().Finite().WellGenerated(); C Category of well generated finite complex reflection groups
>>> from sage.all import * >>> from sage.categories.complex_reflection_groups import ComplexReflectionGroups >>> C = ComplexReflectionGroups().Finite().WellGenerated(); C Category of well generated finite complex reflection groups
Here is an example of a finite well-generated complex reflection group:
sage: W = C.example(); W # optional - gap3 Reducible complex reflection group of rank 4 and type A2 x G(3,1,2)
>>> from sage.all import * >>> W = C.example(); W # optional - gap3 Reducible complex reflection group of rank 4 and type A2 x G(3,1,2)
All finite Coxeter groups are well generated:
sage: CoxeterGroups().Finite().is_subcategory(C) True sage: SymmetricGroup(3) in C # needs sage.groups True
>>> from sage.all import * >>> CoxeterGroups().Finite().is_subcategory(C) True >>> SymmetricGroup(Integer(3)) in C # needs sage.groups True
Note
The category of well generated finite complex reflection groups is currently implemented as an axiom. See discussion on Issue #11187. This may be a bit of overkill. Still it’s nice to have a full subcategory.
- class WellGenerated(base_category)[source]#
Bases:
CategoryWithAxiom
- class Irreducible(base_category)[source]#
Bases:
CategoryWithAxiom
The category of finite irreducible well-generated finite complex reflection groups.
- class ParentMethods[source]#
Bases:
object
- catalan_number(positive=False, polynomial=False)[source]#
Return the Catalan number associated to
self
.It is defined by
\[\prod_{i = 1}^n \frac{d_i + h}{d_i},\]where \(d_1, \ldots, d_n\) are the degrees and where \(h\) is the Coxeter number. See [Ar2006] for further information.
INPUT:
positive
– optional boolean (defaultFalse
) ifTrue
, return instead the positive Catalan numberpolynomial
– optional boolean (defaultFalse
) ifTrue
, return instead the \(q\)-analogue as a polynomial in \(q\)
Note
For the symmetric group \(S_n\), it reduces to the Catalan number \(\frac{1}{n+1} \binom{2n}{n}\).
The Catalan numbers for \(G(r,1,n)\) all coincide for \(r > 1\).
EXAMPLES:
sage: [ColoredPermutations(1,n).catalan_number() # needs sage.combinat ....: for n in [3,4,5]] [5, 14, 42] sage: [ColoredPermutations(2,n).catalan_number() # needs sage.combinat ....: for n in [3,4,5]] [20, 70, 252] sage: [ReflectionGroup((2,2,n)).catalan_number() # optional - gap3 ....: for n in [3,4,5]] [14, 50, 182]
>>> from sage.all import * >>> [ColoredPermutations(Integer(1),n).catalan_number() # needs sage.combinat ... for n in [Integer(3),Integer(4),Integer(5)]] [5, 14, 42] >>> [ColoredPermutations(Integer(2),n).catalan_number() # needs sage.combinat ... for n in [Integer(3),Integer(4),Integer(5)]] [20, 70, 252] >>> [ReflectionGroup((Integer(2),Integer(2),n)).catalan_number() # optional - gap3 ... for n in [Integer(3),Integer(4),Integer(5)]] [14, 50, 182]
- coxeter_number()[source]#
Return the Coxeter number of a well-generated, irreducible reflection group. This is defined to be the order of a regular element in
self
, and is equal to the highest degree ofself
.See also
ComplexReflectionGroups.Finite.Irreducible()
Note
This method overwrites the more general method for complex reflection groups since the expression given here is quicker to compute.
EXAMPLES:
sage: W = ColoredPermutations(1,3) # needs sage.combinat sage: W.coxeter_number() # needs sage.combinat 3 sage: W = ColoredPermutations(4,3) # needs sage.combinat sage: W.coxeter_number() # needs sage.combinat 12 sage: W = ReflectionGroup((4,4,3)) # optional - gap3 sage: W.coxeter_number() # optional - gap3 8
>>> from sage.all import * >>> W = ColoredPermutations(Integer(1),Integer(3)) # needs sage.combinat >>> W.coxeter_number() # needs sage.combinat 3 >>> W = ColoredPermutations(Integer(4),Integer(3)) # needs sage.combinat >>> W.coxeter_number() # needs sage.combinat 12 >>> W = ReflectionGroup((Integer(4),Integer(4),Integer(3))) # optional - gap3 >>> W.coxeter_number() # optional - gap3 8
- fuss_catalan_number(m, positive=False, polynomial=False)[source]#
Return the
m
-th Fuss-Catalan number associated toself
.This is defined by
\[\prod_{i = 1}^n \frac{d_i + mh}{d_i},\]where \(d_1, \ldots, d_n\) are the degrees and \(h\) is the Coxeter number.
INPUT:
positive
– optional boolean (defaultFalse
) ifTrue
, return instead the positive Fuss-Catalan numberpolynomial
– optional boolean (defaultFalse
) ifTrue
, return instead the \(q\)-analogue as a polynomial in \(q\)
See [Ar2006] for further information.
Note
For the symmetric group \(S_n\), it reduces to the Fuss-Catalan number \(\frac{1}{mn+1}\binom{(m+1)n}{n}\).
The Fuss-Catalan numbers for \(G(r, 1, n)\) all coincide for \(r > 1\).
EXAMPLES:
sage: W = ColoredPermutations(1,3) # needs sage.combinat sage: [W.fuss_catalan_number(i) for i in [1,2,3]] # needs sage.combinat [5, 12, 22] sage: W = ColoredPermutations(1,4) # needs sage.combinat sage: [W.fuss_catalan_number(i) for i in [1,2,3]] # needs sage.combinat [14, 55, 140] sage: W = ColoredPermutations(1,5) # needs sage.combinat sage: [W.fuss_catalan_number(i) for i in [1,2,3]] # needs sage.combinat [42, 273, 969] sage: W = ColoredPermutations(2,2) # needs sage.combinat sage: [W.fuss_catalan_number(i) for i in [1,2,3]] # needs sage.combinat [6, 15, 28] sage: W = ColoredPermutations(2,3) # needs sage.combinat sage: [W.fuss_catalan_number(i) for i in [1,2,3]] # needs sage.combinat [20, 84, 220] sage: W = ColoredPermutations(2,4) # needs sage.combinat sage: [W.fuss_catalan_number(i) for i in [1,2,3]] # needs sage.combinat [70, 495, 1820]
>>> from sage.all import * >>> W = ColoredPermutations(Integer(1),Integer(3)) # needs sage.combinat >>> [W.fuss_catalan_number(i) for i in [Integer(1),Integer(2),Integer(3)]] # needs sage.combinat [5, 12, 22] >>> W = ColoredPermutations(Integer(1),Integer(4)) # needs sage.combinat >>> [W.fuss_catalan_number(i) for i in [Integer(1),Integer(2),Integer(3)]] # needs sage.combinat [14, 55, 140] >>> W = ColoredPermutations(Integer(1),Integer(5)) # needs sage.combinat >>> [W.fuss_catalan_number(i) for i in [Integer(1),Integer(2),Integer(3)]] # needs sage.combinat [42, 273, 969] >>> W = ColoredPermutations(Integer(2),Integer(2)) # needs sage.combinat >>> [W.fuss_catalan_number(i) for i in [Integer(1),Integer(2),Integer(3)]] # needs sage.combinat [6, 15, 28] >>> W = ColoredPermutations(Integer(2),Integer(3)) # needs sage.combinat >>> [W.fuss_catalan_number(i) for i in [Integer(1),Integer(2),Integer(3)]] # needs sage.combinat [20, 84, 220] >>> W = ColoredPermutations(Integer(2),Integer(4)) # needs sage.combinat >>> [W.fuss_catalan_number(i) for i in [Integer(1),Integer(2),Integer(3)]] # needs sage.combinat [70, 495, 1820]
- number_of_reflections_of_full_support()[source]#
Return the number of reflections with full support.
EXAMPLES:
sage: W = Permutations(4) sage: W.number_of_reflections_of_full_support() 1 sage: W = ColoredPermutations(1,4) # needs sage.combinat sage: W.number_of_reflections_of_full_support() 1 sage: W = CoxeterGroup("B3") # needs sage.combinat sage.groups sage: W.number_of_reflections_of_full_support() # needs sage.combinat sage.groups 3 sage: W = ColoredPermutations(3,3) # needs sage.combinat sage: W.number_of_reflections_of_full_support() # needs sage.combinat 3
>>> from sage.all import * >>> W = Permutations(Integer(4)) >>> W.number_of_reflections_of_full_support() 1 >>> W = ColoredPermutations(Integer(1),Integer(4)) # needs sage.combinat >>> W.number_of_reflections_of_full_support() 1 >>> W = CoxeterGroup("B3") # needs sage.combinat sage.groups >>> W.number_of_reflections_of_full_support() # needs sage.combinat sage.groups 3 >>> W = ColoredPermutations(Integer(3),Integer(3)) # needs sage.combinat >>> W.number_of_reflections_of_full_support() # needs sage.combinat 3
- rational_catalan_number(p, polynomial=False)[source]#
Return the
p
-th rational Catalan number associated toself
.It is defined by
\[\prod_{i = 1}^n \frac{p + (p(d_i-1)) \mod h)}{d_i},\]where \(d_1, \ldots, d_n\) are the degrees and \(h\) is the Coxeter number. See [STW2016] for this formula.
INPUT:
polynomial
– optional boolean (defaultFalse
) ifTrue
, return instead the \(q\)-analogue as a polynomial in \(q\)
EXAMPLES:
sage: W = ColoredPermutations(1,3) # needs sage.combinat sage: [W.rational_catalan_number(p) for p in [5,7,8]] # needs sage.combinat [7, 12, 15] sage: W = ColoredPermutations(2,2) # needs sage.combinat sage: [W.rational_catalan_number(p) for p in [7,9,11]] # needs sage.combinat [10, 15, 21]
>>> from sage.all import * >>> W = ColoredPermutations(Integer(1),Integer(3)) # needs sage.combinat >>> [W.rational_catalan_number(p) for p in [Integer(5),Integer(7),Integer(8)]] # needs sage.combinat [7, 12, 15] >>> W = ColoredPermutations(Integer(2),Integer(2)) # needs sage.combinat >>> [W.rational_catalan_number(p) for p in [Integer(7),Integer(9),Integer(11)]] # needs sage.combinat [10, 15, 21]
- example()[source]#
Return an example of an irreducible well-generated complex reflection group.
EXAMPLES:
sage: from sage.categories.complex_reflection_groups import ComplexReflectionGroups sage: C = ComplexReflectionGroups().Finite().WellGenerated().Irreducible() sage: C.example() # needs sage.combinat 4-colored permutations of size 3
>>> from sage.all import * >>> from sage.categories.complex_reflection_groups import ComplexReflectionGroups >>> C = ComplexReflectionGroups().Finite().WellGenerated().Irreducible() >>> C.example() # needs sage.combinat 4-colored permutations of size 3
- class ParentMethods[source]#
Bases:
object
- coxeter_element()[source]#
Return a Coxeter element.
The result is the product of the simple reflections, in some order.
Note
This implementation is shared with well generated complex reflection groups. It would be nicer to put it in some joint super category; however, in the current state of the art, there is none where it is clear that this is the right construction for obtaining a Coxeter element.
In this context, this is an element having a regular eigenvector (a vector not contained in any reflection hyperplane of
self
).EXAMPLES:
sage: # needs sage.combinat sage.groups sage: CoxeterGroup(['A', 4]).coxeter_element().reduced_word() [1, 2, 3, 4] sage: CoxeterGroup(['B', 4]).coxeter_element().reduced_word() [1, 2, 3, 4] sage: CoxeterGroup(['D', 4]).coxeter_element().reduced_word() [1, 2, 4, 3] sage: CoxeterGroup(['F', 4]).coxeter_element().reduced_word() [1, 2, 3, 4] sage: CoxeterGroup(['E', 8]).coxeter_element().reduced_word() [1, 3, 2, 4, 5, 6, 7, 8] sage: CoxeterGroup(['H', 3]).coxeter_element().reduced_word() [1, 2, 3]
>>> from sage.all import * >>> # needs sage.combinat sage.groups >>> CoxeterGroup(['A', Integer(4)]).coxeter_element().reduced_word() [1, 2, 3, 4] >>> CoxeterGroup(['B', Integer(4)]).coxeter_element().reduced_word() [1, 2, 3, 4] >>> CoxeterGroup(['D', Integer(4)]).coxeter_element().reduced_word() [1, 2, 4, 3] >>> CoxeterGroup(['F', Integer(4)]).coxeter_element().reduced_word() [1, 2, 3, 4] >>> CoxeterGroup(['E', Integer(8)]).coxeter_element().reduced_word() [1, 3, 2, 4, 5, 6, 7, 8] >>> CoxeterGroup(['H', Integer(3)]).coxeter_element().reduced_word() [1, 2, 3]
This method is also used for well generated finite complex reflection groups:
sage: W = ReflectionGroup((1,1,4)) # optional - gap3 sage: W.coxeter_element().reduced_word() # optional - gap3 [1, 2, 3] sage: W = ReflectionGroup((2,1,4)) # optional - gap3 sage: W.coxeter_element().reduced_word() # optional - gap3 [1, 2, 3, 4] sage: W = ReflectionGroup((4,1,4)) # optional - gap3 sage: W.coxeter_element().reduced_word() # optional - gap3 [1, 2, 3, 4] sage: W = ReflectionGroup((4,4,4)) # optional - gap3 sage: W.coxeter_element().reduced_word() # optional - gap3 [1, 2, 3, 4]
>>> from sage.all import * >>> W = ReflectionGroup((Integer(1),Integer(1),Integer(4))) # optional - gap3 >>> W.coxeter_element().reduced_word() # optional - gap3 [1, 2, 3] >>> W = ReflectionGroup((Integer(2),Integer(1),Integer(4))) # optional - gap3 >>> W.coxeter_element().reduced_word() # optional - gap3 [1, 2, 3, 4] >>> W = ReflectionGroup((Integer(4),Integer(1),Integer(4))) # optional - gap3 >>> W.coxeter_element().reduced_word() # optional - gap3 [1, 2, 3, 4] >>> W = ReflectionGroup((Integer(4),Integer(4),Integer(4))) # optional - gap3 >>> W.coxeter_element().reduced_word() # optional - gap3 [1, 2, 3, 4]
- coxeter_elements()[source]#
Return the (unique) conjugacy class in
self
containing all Coxeter elements.A Coxeter element is an element that has an eigenvalue \(e^{2\pi i/h}\) where \(h\) is the Coxeter number.
In case of finite Coxeter groups, these are exactly the elements that are conjugate to one (or, equivalently, all) standard Coxeter element, this is, to an element that is the product of the simple generators in some order.
See also
standard_coxeter_elements()
EXAMPLES:
sage: W = ReflectionGroup((1,1,3)) # optional - gap3 sage: sorted(c.reduced_word() # optional - gap3 ....: for c in W.coxeter_elements()) [[1, 2], [2, 1]] sage: W = ReflectionGroup((1,1,4)) # optional - gap3 sage: sorted(c.reduced_word() # optional - gap3 ....: for c in W.coxeter_elements()) [[1, 2, 1, 3, 2], [1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 1, 3, 2, 1], [3, 2, 1]]
>>> from sage.all import * >>> W = ReflectionGroup((Integer(1),Integer(1),Integer(3))) # optional - gap3 >>> sorted(c.reduced_word() # optional - gap3 ... for c in W.coxeter_elements()) [[1, 2], [2, 1]] >>> W = ReflectionGroup((Integer(1),Integer(1),Integer(4))) # optional - gap3 >>> sorted(c.reduced_word() # optional - gap3 ... for c in W.coxeter_elements()) [[1, 2, 1, 3, 2], [1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 1, 3, 2, 1], [3, 2, 1]]
- is_well_generated()[source]#
Return
True
asself
is well-generated.EXAMPLES:
sage: W = ReflectionGroup((3,1,2)) # optional - gap3 sage: W.is_well_generated() # optional - gap3 True
>>> from sage.all import * >>> W = ReflectionGroup((Integer(3),Integer(1),Integer(2))) # optional - gap3 >>> W.is_well_generated() # optional - gap3 True
- milnor_fiber_complex()[source]#
Return the Milnor fiber complex of
self
.The Milnor fiber complex of a finite well-generated complex reflection group \(W\) is the simplicial complex whose face poset is given by
milnor_fiber_poset()
. When \(W\) is an irreducible Shephard group, it is also an equivariant strong deformation retract of the Milnor fiber \(f_1^{-1}(1)\), where \(f_1: V \to \CC\) is the polynomial invariant of smallest degree acting on the reflection representation \(V\).When \(W\) is a Coxeter group, this is isomorphic to the Coxeter complex of \(W\).
EXAMPLES:
sage: W = ColoredPermutations(3, 2) # needs sage.combinat sage: C = W.milnor_fiber_complex() # needs sage.combinat sage: C.homology() # needs sage.combinat {0: 0, 1: Z x Z x Z x Z} sage: W = ReflectionGroup(5) # optional - gap3 sage: C = W.milnor_fiber_complex() # optional - gap3 sage: C.homology() # optional - gap3 {0: 0, 1: Z^25}
>>> from sage.all import * >>> W = ColoredPermutations(Integer(3), Integer(2)) # needs sage.combinat >>> C = W.milnor_fiber_complex() # needs sage.combinat >>> C.homology() # needs sage.combinat {0: 0, 1: Z x Z x Z x Z} >>> W = ReflectionGroup(Integer(5)) # optional - gap3 >>> C = W.milnor_fiber_complex() # optional - gap3 >>> C.homology() # optional - gap3 {0: 0, 1: Z^25}
- standard_coxeter_elements()[source]#
Return all standard Coxeter elements in
self
.This is the set of all elements in self obtained from any product of the simple reflections in
self
.Note
self
is assumed to be well-generated.This works even beyond real reflection groups, but the conjugacy class is not unique and we only obtain one such class.
EXAMPLES:
sage: W = ReflectionGroup(4) # optional - gap3 sage: sorted(W.standard_coxeter_elements()) # optional - gap3 [(1,7,6,12,23,20)(2,8,17,24,9,5)(3,16,10,19,15,21)(4,14,11,22,18,13), (1,10,4,12,21,22)(2,11,19,24,13,3)(5,15,7,17,16,23)(6,18,8,20,14,9)]
>>> from sage.all import * >>> W = ReflectionGroup(Integer(4)) # optional - gap3 >>> sorted(W.standard_coxeter_elements()) # optional - gap3 [(1,7,6,12,23,20)(2,8,17,24,9,5)(3,16,10,19,15,21)(4,14,11,22,18,13), (1,10,4,12,21,22)(2,11,19,24,13,3)(5,15,7,17,16,23)(6,18,8,20,14,9)]
- example()[source]#
Return an example of a well-generated complex reflection group.
EXAMPLES:
sage: from sage.categories.complex_reflection_groups import ComplexReflectionGroups sage: C = ComplexReflectionGroups().Finite().WellGenerated() sage: C.example() # optional - gap3 Reducible complex reflection group of rank 4 and type A2 x G(3,1,2)
>>> from sage.all import * >>> from sage.categories.complex_reflection_groups import ComplexReflectionGroups >>> C = ComplexReflectionGroups().Finite().WellGenerated() >>> C.example() # optional - gap3 Reducible complex reflection group of rank 4 and type A2 x G(3,1,2)
- example()[source]#
Return an example of a complex reflection group.
EXAMPLES:
sage: from sage.categories.complex_reflection_groups import ComplexReflectionGroups sage: ComplexReflectionGroups().Finite().example() # optional - gap3 Reducible real reflection group of rank 4 and type A2 x B2
>>> from sage.all import * >>> from sage.categories.complex_reflection_groups import ComplexReflectionGroups >>> ComplexReflectionGroups().Finite().example() # optional - gap3 Reducible real reflection group of rank 4 and type A2 x B2