Division rings¶
- class sage.categories.division_rings.DivisionRings(base_category)[source]¶
Bases:
CategoryWithAxiom_singleton
The category of division rings.
A division ring (or skew field) is a not necessarily commutative ring where all nonzero elements have multiplicative inverses
EXAMPLES:
sage: DivisionRings() Category of division rings sage: DivisionRings().super_categories() [Category of domains]
>>> from sage.all import * >>> DivisionRings() Category of division rings >>> DivisionRings().super_categories() [Category of domains]
- Finite_extra_super_categories()[source]¶
Return extraneous super categories for
DivisionRings().Finite()
.EXAMPLES:
Any field is a division ring:
sage: Fields().is_subcategory(DivisionRings()) True
>>> from sage.all import * >>> Fields().is_subcategory(DivisionRings()) True
This methods specifies that, by Weddeburn theorem, the reciprocal holds in the finite case: a finite division ring is commutative and thus a field:
sage: DivisionRings().Finite_extra_super_categories() (Category of commutative magmas,) sage: DivisionRings().Finite() Category of finite enumerated fields
>>> from sage.all import * >>> DivisionRings().Finite_extra_super_categories() (Category of commutative magmas,) >>> DivisionRings().Finite() Category of finite enumerated fields
Warning
This is not implemented in
DivisionRings.Finite.extra_super_categories
because the categories of finite division rings and of finite fields coincide. See the section Deduction rules in the documentation of axioms.
- extra_super_categories()[source]¶
Return the
Domains
category.This method specifies that a division ring has no zero divisors, i.e. is a domain.
See also
The Deduction rules section in the documentation of axioms
EXAMPLES:
sage: DivisionRings().extra_super_categories() (Category of domains,) sage: "NoZeroDivisors" in DivisionRings().axioms() True
>>> from sage.all import * >>> DivisionRings().extra_super_categories() (Category of domains,) >>> "NoZeroDivisors" in DivisionRings().axioms() True