Examples of posets¶
- class sage.categories.examples.posets.FiniteSetsOrderedByInclusion[source]¶
Bases:
UniqueRepresentation
,Parent
An example of a poset: finite sets ordered by inclusion.
This class provides a minimal implementation of a poset
EXAMPLES:
sage: P = Posets().example(); P An example of a poset: sets ordered by inclusion
>>> from sage.all import * >>> P = Posets().example(); P An example of a poset: sets ordered by inclusion
We conclude by running systematic tests on this poset:
sage: TestSuite(P).run(verbose = True) running ._test_an_element() . . . pass running ._test_cardinality() . . . pass running ._test_category() . . . pass running ._test_construction() . . . pass running ._test_elements() . . . Running the test suite of self.an_element() running ._test_category() . . . pass running ._test_eq() . . . pass running ._test_new() . . . pass running ._test_not_implemented_methods() . . . pass running ._test_pickling() . . . pass pass running ._test_elements_eq_reflexive() . . . pass running ._test_elements_eq_symmetric() . . . pass running ._test_elements_eq_transitive() . . . pass running ._test_elements_neq() . . . pass running ._test_eq() . . . pass running ._test_new() . . . pass running ._test_not_implemented_methods() . . . pass running ._test_pickling() . . . pass running ._test_some_elements() . . . pass
>>> from sage.all import * >>> TestSuite(P).run(verbose = True) running ._test_an_element() . . . pass running ._test_cardinality() . . . pass running ._test_category() . . . pass running ._test_construction() . . . pass running ._test_elements() . . . Running the test suite of self.an_element() running ._test_category() . . . pass running ._test_eq() . . . pass running ._test_new() . . . pass running ._test_not_implemented_methods() . . . pass running ._test_pickling() . . . pass pass running ._test_elements_eq_reflexive() . . . pass running ._test_elements_eq_symmetric() . . . pass running ._test_elements_eq_transitive() . . . pass running ._test_elements_neq() . . . pass running ._test_eq() . . . pass running ._test_new() . . . pass running ._test_not_implemented_methods() . . . pass running ._test_pickling() . . . pass running ._test_some_elements() . . . pass
- class Element[source]¶
Bases:
ElementWrapper
- wrapped_class[source]¶
alias of
Set_object_enumerated
- an_element()[source]¶
Return an element of this poset.
EXAMPLES:
sage: B = Posets().example() sage: B.an_element() {1, 4, 6}
>>> from sage.all import * >>> B = Posets().example() >>> B.an_element() {1, 4, 6}
- le(x, y)[source]¶
Return whether \(x\) is a subset of \(y\).
EXAMPLES:
sage: P = Posets().example() sage: P.le( P(Set([1,3])), P(Set([1,2,3])) ) True sage: P.le( P(Set([1,3])), P(Set([1,3])) ) True sage: P.le( P(Set([1,2])), P(Set([1,3])) ) False
>>> from sage.all import * >>> P = Posets().example() >>> P.le( P(Set([Integer(1),Integer(3)])), P(Set([Integer(1),Integer(2),Integer(3)])) ) True >>> P.le( P(Set([Integer(1),Integer(3)])), P(Set([Integer(1),Integer(3)])) ) True >>> P.le( P(Set([Integer(1),Integer(2)])), P(Set([Integer(1),Integer(3)])) ) False
- class sage.categories.examples.posets.PositiveIntegersOrderedByDivisibilityFacade[source]¶
Bases:
UniqueRepresentation
,Parent
An example of a facade poset: the positive integers ordered by divisibility.
This class provides a minimal implementation of a facade poset
EXAMPLES:
sage: P = Posets().example("facade"); P An example of a facade poset: the positive integers ordered by divisibility sage: P(5) 5 sage: P(0) Traceback (most recent call last): ... ValueError: Can't coerce `0` in any parent `An example of a facade poset: the positive integers ordered by divisibility` is a facade for sage: 3 in P True sage: 0 in P False
>>> from sage.all import * >>> P = Posets().example("facade"); P An example of a facade poset: the positive integers ordered by divisibility >>> P(Integer(5)) 5 >>> P(Integer(0)) Traceback (most recent call last): ... ValueError: Can't coerce `0` in any parent `An example of a facade poset: the positive integers ordered by divisibility` is a facade for >>> Integer(3) in P True >>> Integer(0) in P False
- class element_class(X, category=None)[source]¶
Bases:
Set_object_enumerated
,parent_class
A finite enumerated set.
- le(x, y)[source]¶
Return whether \(x\) is divisible by \(y\).
EXAMPLES:
sage: P = Posets().example("facade") sage: P.le(3, 6) True sage: P.le(3, 3) True sage: P.le(3, 7) False
>>> from sage.all import * >>> P = Posets().example("facade") >>> P.le(Integer(3), Integer(6)) True >>> P.le(Integer(3), Integer(3)) True >>> P.le(Integer(3), Integer(7)) False