Integral domains¶
- class sage.categories.integral_domains.IntegralDomains(base_category)[source]¶
Bases:
CategoryWithAxiom_singleton
The category of integral domains.
An integral domain is commutative ring with no zero divisors, or equivalently a commutative domain.
EXAMPLES:
sage: C = IntegralDomains(); C Category of integral domains sage: sorted(C.super_categories(), key=str) [Category of commutative rings, Category of domains] sage: C is Domains().Commutative() True sage: C is Rings().Commutative().NoZeroDivisors() True
>>> from sage.all import * >>> C = IntegralDomains(); C Category of integral domains >>> sorted(C.super_categories(), key=str) [Category of commutative rings, Category of domains] >>> C is Domains().Commutative() True >>> C is Rings().Commutative().NoZeroDivisors() True
- class ParentMethods[source]¶
Bases:
object
- is_field(proof=True)[source]¶
Return
True
if this ring is a field.EXAMPLES:
sage: ZZ['x'].is_field() False
>>> from sage.all import * >>> ZZ['x'].is_field() False
- is_integral_domain(proof=True)[source]¶
Return
True
, since this in an object of the category of integral domains.EXAMPLES:
sage: ZZ.is_integral_domain() True sage: QQ.is_integral_domain() True sage: Parent(QQ, category=IntegralDomains()).is_integral_domain() True sage: L.<z> = LazyLaurentSeriesRing(QQ) # needs sage.combinat sage: L.is_integral_domain() # needs sage.combinat True sage: L.is_integral_domain(proof=True) # needs sage.combinat True sage: ZZ['x'].is_integral_domain() True
>>> from sage.all import * >>> ZZ.is_integral_domain() True >>> QQ.is_integral_domain() True >>> Parent(QQ, category=IntegralDomains()).is_integral_domain() True >>> L = LazyLaurentSeriesRing(QQ, names=('z',)); (z,) = L._first_ngens(1)# needs sage.combinat >>> L.is_integral_domain() # needs sage.combinat True >>> L.is_integral_domain(proof=True) # needs sage.combinat True >>> ZZ['x'].is_integral_domain() True
- localization(additional_units, names=None, normalize=True, category=None)[source]¶
Return the localization of
self
at the given additional units.EXAMPLES:
sage: R.<x, y> = GF(3)[] sage: R.localization((x*y, x**2 + y**2)) # needs sage.rings.finite_rings Multivariate Polynomial Ring in x, y over Finite Field of size 3 localized at (y, x, x^2 + y^2) sage: ~y in _ # needs sage.rings.finite_rings True
>>> from sage.all import * >>> R = GF(Integer(3))['x, y']; (x, y,) = R._first_ngens(2) >>> R.localization((x*y, x**Integer(2) + y**Integer(2))) # needs sage.rings.finite_rings Multivariate Polynomial Ring in x, y over Finite Field of size 3 localized at (y, x, x^2 + y^2) >>> ~y in _ # needs sage.rings.finite_rings True