Hopf algebras#
- class sage.categories.hopf_algebras.HopfAlgebras(base, name=None)[source]#
Bases:
Category_over_base_ring
The category of Hopf algebras.
EXAMPLES:
sage: HopfAlgebras(QQ) Category of Hopf algebras over Rational Field sage: HopfAlgebras(QQ).super_categories() [Category of bialgebras over Rational Field]
>>> from sage.all import * >>> HopfAlgebras(QQ) Category of Hopf algebras over Rational Field >>> HopfAlgebras(QQ).super_categories() [Category of bialgebras over Rational Field]
- class DualCategory(base, name=None)[source]#
Bases:
Category_over_base_ring
The category of Hopf algebras constructed as dual of a Hopf algebra
- class ElementMethods[source]#
Bases:
object
- antipode()[source]#
Return the antipode of self
EXAMPLES:
sage: # needs sage.groups sage: A = HopfAlgebrasWithBasis(QQ).example(); A An example of Hopf algebra with basis: the group algebra of the Dihedral group of order 6 as a permutation group over Rational Field sage: [a,b] = A.algebra_generators() sage: a, a.antipode() (B[(1,2,3)], B[(1,3,2)]) sage: b, b.antipode() (B[(1,3)], B[(1,3)])
>>> from sage.all import * >>> # needs sage.groups >>> A = HopfAlgebrasWithBasis(QQ).example(); A An example of Hopf algebra with basis: the group algebra of the Dihedral group of order 6 as a permutation group over Rational Field >>> [a,b] = A.algebra_generators() >>> a, a.antipode() (B[(1,2,3)], B[(1,3,2)]) >>> b, b.antipode() (B[(1,3)], B[(1,3)])
- class Realizations(category, *args)[source]#
Bases:
RealizationsCategory
- class ParentMethods[source]#
Bases:
object
- antipode_by_coercion(x)[source]#
Returns the image of
x
by the antipodeThis default implementation coerces to the default realization, computes the antipode there, and coerces the result back.
EXAMPLES:
sage: # needs sage.combinat sage.modules sage: N = NonCommutativeSymmetricFunctions(QQ) sage: R = N.ribbon() sage: R.antipode_by_coercion.__module__ 'sage.categories.hopf_algebras' sage: R.antipode_by_coercion(R[1,3,1]) -R[2, 1, 2]
>>> from sage.all import * >>> # needs sage.combinat sage.modules >>> N = NonCommutativeSymmetricFunctions(QQ) >>> R = N.ribbon() >>> R.antipode_by_coercion.__module__ 'sage.categories.hopf_algebras' >>> R.antipode_by_coercion(R[Integer(1),Integer(3),Integer(1)]) -R[2, 1, 2]
- class Super(base_category)[source]#
Bases:
SuperModulesCategory
The category of super Hopf algebras.
Note
A super Hopf algebra is not simply a Hopf algebra with a \(\ZZ/2\ZZ\) grading due to the signed bialgebra compatibility conditions.
- class ElementMethods[source]#
Bases:
object
- antipode()[source]#
Return the antipode of
self
.EXAMPLES:
sage: A = SteenrodAlgebra(3) # needs sage.combinat sage.modules sage: a = A.an_element() # needs sage.combinat sage.modules sage: a, a.antipode() # needs sage.combinat sage.modules (2 Q_1 Q_3 P(2,1), Q_1 Q_3 P(2,1))
>>> from sage.all import * >>> A = SteenrodAlgebra(Integer(3)) # needs sage.combinat sage.modules >>> a = A.an_element() # needs sage.combinat sage.modules >>> a, a.antipode() # needs sage.combinat sage.modules (2 Q_1 Q_3 P(2,1), Q_1 Q_3 P(2,1))
- dual()[source]#
Return the dual category.
EXAMPLES:
The category of super Hopf algebras over any field is self dual:
sage: C = HopfAlgebras(QQ).Super() sage: C.dual() Category of super Hopf algebras over Rational Field
>>> from sage.all import * >>> C = HopfAlgebras(QQ).Super() >>> C.dual() Category of super Hopf algebras over Rational Field
- class TensorProducts(category, *args)[source]#
Bases:
TensorProductsCategory
The category of Hopf algebras constructed by tensor product of Hopf algebras
- extra_super_categories()[source]#
EXAMPLES:
sage: C = HopfAlgebras(QQ).TensorProducts() sage: C.extra_super_categories() [Category of Hopf algebras over Rational Field] sage: sorted(C.super_categories(), key=str) [Category of Hopf algebras over Rational Field, Category of tensor products of algebras over Rational Field, Category of tensor products of coalgebras over Rational Field]
>>> from sage.all import * >>> C = HopfAlgebras(QQ).TensorProducts() >>> C.extra_super_categories() [Category of Hopf algebras over Rational Field] >>> sorted(C.super_categories(), key=str) [Category of Hopf algebras over Rational Field, Category of tensor products of algebras over Rational Field, Category of tensor products of coalgebras over Rational Field]
- WithBasis[source]#
alias of
HopfAlgebrasWithBasis
- dual()[source]#
Return the dual category
EXAMPLES:
The category of Hopf algebras over any field is self dual:
sage: C = HopfAlgebras(QQ) sage: C.dual() Category of Hopf algebras over Rational Field
>>> from sage.all import * >>> C = HopfAlgebras(QQ) >>> C.dual() Category of Hopf algebras over Rational Field