Coalgebras

class sage.categories.coalgebras.Coalgebras(base, name=None)

Bases: sage.categories.category_types.Category_over_base_ring

The category of coalgebras

EXAMPLES:

sage: Coalgebras(QQ)
Category of coalgebras over Rational Field
sage: Coalgebras(QQ).super_categories()
[Category of vector spaces over Rational Field]
class DualObjects(category, *args)

Bases: sage.categories.dual.DualObjectsCategory

extra_super_categories()

Return the dual category.

EXAMPLES:

The category of coalgebras over the Rational Field is dual to the category of algebras over the same field:

sage: C = Coalgebras(QQ)
sage: C.dual()
Category of duals of coalgebras over Rational Field
sage: C.dual().super_categories() # indirect doctest
[Category of algebras over Rational Field, Category of duals of vector spaces over Rational Field]

Warning

This is only correct in certain cases (finite dimension, …). See trac ticket #15647.

class ElementMethods
coproduct()

Returns the coproduct of self

EXAMPLES:

sage: A = HopfAlgebrasWithBasis(QQ).example(); A
An example of Hopf algebra with basis: the group algebra of the Dihedral group of order 6 as a permutation group over Rational Field
sage: [a,b] = A.algebra_generators()
sage: a, a.coproduct()
(B[(1,2,3)], B[(1,2,3)] # B[(1,2,3)])
sage: b, b.coproduct()
(B[(1,3)], B[(1,3)] # B[(1,3)])
counit()

Returns the counit of self

EXAMPLES:

sage: A = HopfAlgebrasWithBasis(QQ).example(); A
An example of Hopf algebra with basis: the group algebra of the Dihedral group of order 6 as a permutation group over Rational Field
sage: [a,b] = A.algebra_generators()
sage: a, a.counit()
(B[(1,2,3)], 1)
sage: b, b.counit()
(B[(1,3)], 1)
class ParentMethods
coproduct(x)

Returns the coproduct of x.

Eventually, there will be a default implementation, delegating to the overloading mechanism and forcing the conversion back

EXAMPLES:

sage: A = HopfAlgebrasWithBasis(QQ).example(); A
An example of Hopf algebra with basis: the group algebra of the Dihedral group of order 6 as a permutation group over Rational Field
sage: [a,b] = A.algebra_generators()
sage: a, A.coproduct(a)
(B[(1,2,3)], B[(1,2,3)] # B[(1,2,3)])
sage: b, A.coproduct(b)
(B[(1,3)], B[(1,3)] # B[(1,3)])
counit(x)

Returns the counit of x.

Eventually, there will be a default implementation, delegating to the overloading mechanism and forcing the conversion back

EXAMPLES:

sage: A = HopfAlgebrasWithBasis(QQ).example(); A
An example of Hopf algebra with basis: the group algebra of the Dihedral group of order 6 as a permutation group over Rational Field
sage: [a,b] = A.algebra_generators()
sage: a, A.counit(a)
(B[(1,2,3)], 1)
sage: b, A.counit(b)
(B[(1,3)], 1)

TODO: implement some tests of the axioms of coalgebras, bialgebras and Hopf algebras using the counit.

class Realizations(category, *args)

Bases: sage.categories.realizations.RealizationsCategory

class ParentMethods
coproduct_by_coercion(x)

Return the coproduct by coercion if coproduct_by_basis is not implemented.

EXAMPLES:

sage: Sym = SymmetricFunctions(QQ)
sage: m = Sym.monomial()
sage: f = m[2,1]
sage: f.coproduct.__module__
'sage.categories.coalgebras'
sage: m.coproduct_on_basis
NotImplemented
sage: m.coproduct == m.coproduct_by_coercion
True
sage: f.coproduct()
m[] # m[2, 1] + m[1] # m[2] + m[2] # m[1] + m[2, 1] # m[]
sage: N = NonCommutativeSymmetricFunctions(QQ)
sage: R = N.ribbon()
sage: R.coproduct_by_coercion.__module__
'sage.categories.coalgebras'
sage: R.coproduct_on_basis
NotImplemented
sage: R.coproduct == R.coproduct_by_coercion
True
sage: R[1].coproduct()
R[] # R[1] + R[1] # R[]
counit_by_coercion(x)

Return the counit of x if counit_by_basis is not implemented.

EXAMPLES:

sage: sp = SymmetricFunctions(QQ).sp()
sage: sp.an_element()
2*sp[] + 2*sp[1] + 3*sp[2]
sage: sp.counit(sp.an_element())
2

sage: o = SymmetricFunctions(QQ).o()
sage: o.an_element()
2*o[] + 2*o[1] + 3*o[2]
sage: o.counit(o.an_element())
-1
class Super(base_category)

Bases: sage.categories.super_modules.SuperModulesCategory

extra_super_categories()

EXAMPLES:

sage: Coalgebras(ZZ).Super().extra_super_categories()
[Join of Category of graded modules over Integer Ring
    and Category of coalgebras over Integer Ring]
sage: Coalgebras(ZZ).Super().super_categories()
[Category of super modules over Integer Ring,
 Category of coalgebras over Integer Ring]

Compare this with the situation for bialgebras:

sage: Bialgebras(ZZ).Super().extra_super_categories()
[]
sage: Bialgebras(ZZ).Super().super_categories()
[Category of super algebras over Integer Ring,
 Category of super coalgebras over Integer Ring]

The category of bialgebras does not occur in these results, since super bialgebras are not bialgebras.

class TensorProducts(category, *args)

Bases: sage.categories.tensor.TensorProductsCategory

class ElementMethods
class ParentMethods
extra_super_categories()

EXAMPLES:

sage: Coalgebras(QQ).TensorProducts().extra_super_categories()
[Category of coalgebras over Rational Field]
sage: Coalgebras(QQ).TensorProducts().super_categories()
[Category of tensor products of vector spaces over Rational Field,
 Category of coalgebras over Rational Field]

Meaning: a tensor product of coalgebras is a coalgebra

WithBasis

alias of sage.categories.coalgebras_with_basis.CoalgebrasWithBasis

class WithRealizations(category, *args)

Bases: sage.categories.with_realizations.WithRealizationsCategory

class ParentMethods
coproduct(x)

Returns the coproduct of x.

EXAMPLES:

sage: N = NonCommutativeSymmetricFunctions(QQ)
sage: S = N.complete()
sage: N.coproduct.__module__
'sage.categories.coalgebras'
sage: N.coproduct(S[2])
S[] # S[2] + S[1] # S[1] + S[2] # S[]
counit(x)

Return the counit of x.

EXAMPLES:

sage: Sym = SymmetricFunctions(QQ)
sage: s = Sym.schur()
sage: f = s[2,1]
sage: f.counit.__module__
'sage.categories.coalgebras'
sage: f.counit()
0
sage: N = NonCommutativeSymmetricFunctions(QQ)
sage: N.counit.__module__
'sage.categories.coalgebras'
sage: N.counit(N.one())
1
sage: x = N.an_element(); x
2*S[] + 2*S[1] + 3*S[1, 1]
sage: N.counit(x)
2
super_categories()

EXAMPLES:

sage: Coalgebras(QQ).super_categories()
[Category of vector spaces over Rational Field]