# Coalgebras#

class sage.categories.coalgebras.Coalgebras(base, name=None)#

The category of coalgebras

EXAMPLES:

sage: Coalgebras(QQ)
Category of coalgebras over Rational Field
sage: Coalgebras(QQ).super_categories()
[Category of vector spaces over Rational Field]

class Cocommutative(base_category)#

Category of cocommutative coalgebras.

class DualObjects(category, *args)#
extra_super_categories()#

Return the dual category.

EXAMPLES:

The category of coalgebras over the Rational Field is dual to the category of algebras over the same field:

sage: C = Coalgebras(QQ)
sage: C.dual()
Category of duals of coalgebras over Rational Field
sage: C.dual().super_categories() # indirect doctest
[Category of algebras over Rational Field,
Category of duals of vector spaces over Rational Field]


Warning

This is only correct in certain cases (finite dimension, …). See github issue #15647.

class ElementMethods#

Bases: object

coproduct()#

Return the coproduct of self.

EXAMPLES:

sage: A = HopfAlgebrasWithBasis(QQ).example(); A
An example of Hopf algebra with basis:
the group algebra of the Dihedral group of order 6 as a permutation group over Rational Field
sage: [a,b] = A.algebra_generators()
sage: a, a.coproduct()
(B[(1,2,3)], B[(1,2,3)] # B[(1,2,3)])
sage: b, b.coproduct()
(B[(1,3)], B[(1,3)] # B[(1,3)])

counit()#

Return the counit of self.

EXAMPLES:

sage: A = HopfAlgebrasWithBasis(QQ).example(); A
An example of Hopf algebra with basis:
the group algebra of the Dihedral group of order 6 as a permutation group over Rational Field
sage: [a,b] = A.algebra_generators()
sage: a, a.counit()
(B[(1,2,3)], 1)
sage: b, b.counit()
(B[(1,3)], 1)

class Filtered(base_category)#

Category of filtered coalgebras.

alias of GradedCoalgebras

class ParentMethods#

Bases: object

coproduct(x)#

Return the coproduct of x.

Eventually, there will be a default implementation, delegating to the overloading mechanism and forcing the conversion back

EXAMPLES:

sage: A = HopfAlgebrasWithBasis(QQ).example(); A
An example of Hopf algebra with basis:
the group algebra of the Dihedral group of order 6 as a permutation group over Rational Field
sage: [a,b] = A.algebra_generators()
sage: a, A.coproduct(a)
(B[(1,2,3)], B[(1,2,3)] # B[(1,2,3)])
sage: b, A.coproduct(b)
(B[(1,3)], B[(1,3)] # B[(1,3)])

counit(x)#

Return the counit of x.

Eventually, there will be a default implementation, delegating to the overloading mechanism and forcing the conversion back

EXAMPLES:

sage: A = HopfAlgebrasWithBasis(QQ).example(); A
An example of Hopf algebra with basis:
the group algebra of the Dihedral group of order 6 as a permutation group over Rational Field
sage: [a,b] = A.algebra_generators()
sage: a, A.counit(a)
(B[(1,2,3)], 1)
sage: b, A.counit(b)
(B[(1,3)], 1)


TODO: implement some tests of the axioms of coalgebras, bialgebras and Hopf algebras using the counit.

class Realizations(category, *args)#
class ParentMethods#

Bases: object

coproduct_by_coercion(x)#

Return the coproduct by coercion if coproduct_by_basis is not implemented.

EXAMPLES:

sage: Sym = SymmetricFunctions(QQ)
sage: m = Sym.monomial()
sage: f = m[2,1]
sage: f.coproduct.__module__
'sage.categories.coalgebras'
sage: m.coproduct_on_basis
NotImplemented
sage: m.coproduct == m.coproduct_by_coercion
True
sage: f.coproduct()
m[] # m[2, 1] + m # m + m # m + m[2, 1] # m[]

sage: N = NonCommutativeSymmetricFunctions(QQ)
sage: R = N.ribbon()
sage: R.coproduct_by_coercion.__module__
'sage.categories.coalgebras'
sage: R.coproduct_on_basis
NotImplemented
sage: R.coproduct == R.coproduct_by_coercion
True
sage: R.coproduct()
R[] # R + R # R[]

counit_by_coercion(x)#

Return the counit of x if counit_by_basis is not implemented.

EXAMPLES:

sage: sp = SymmetricFunctions(QQ).sp()
sage: sp.an_element()
2*sp[] + 2*sp + 3*sp
sage: sp.counit(sp.an_element())
2

sage: o = SymmetricFunctions(QQ).o()
sage: o.an_element()
2*o[] + 2*o + 3*o
sage: o.counit(o.an_element())
-1

class SubcategoryMethods#

Bases: object

Cocommutative()#

Return the full subcategory of the cocommutative objects of self.

A coalgebra $$C$$ is said to be cocommutative if

$\Delta(c) = \sum_{(c)} c_{(1)} \otimes c_{(2)} = \sum_{(c)} c_{(2)} \otimes c_{(1)}$

in Sweedler’s notation for all $$c \in C$$.

EXAMPLES:

sage: C1 = Coalgebras(ZZ).Cocommutative().WithBasis(); C1
Category of cocommutative coalgebras with basis over Integer Ring
sage: C2 = Coalgebras(ZZ).WithBasis().Cocommutative()
sage: C1 is C2
True
sage: BialgebrasWithBasis(QQ).Cocommutative()
Category of cocommutative bialgebras with basis over Rational Field

class Super(base_category)#
class SubcategoryMethods#

Bases: object

Supercocommutative()#

Return the full subcategory of the supercocommutative objects of self.

EXAMPLES:

sage: Coalgebras(ZZ).WithBasis().Super().Supercocommutative()
Category of supercocommutative super coalgebras with basis over Integer Ring
sage: BialgebrasWithBasis(QQ).Super().Supercocommutative()
Join of Category of super algebras with basis over Rational Field
and Category of super bialgebras over Rational Field
and Category of super coalgebras with basis over Rational Field
and Category of supercocommutative super coalgebras over Rational Field

class Supercocommutative(base_category)#

Category of supercocommutative coalgebras.

extra_super_categories()#

EXAMPLES:

sage: Coalgebras(ZZ).Super().extra_super_categories()
[Category of graded coalgebras over Integer Ring]
sage: Coalgebras(ZZ).Super().super_categories()
[Category of graded coalgebras over Integer Ring,
Category of super modules over Integer Ring]


Compare this with the situation for bialgebras:

sage: Bialgebras(ZZ).Super().extra_super_categories()
[]
sage: Bialgebras(ZZ).Super().super_categories()
[Category of super algebras over Integer Ring,
Category of super coalgebras over Integer Ring]


The category of bialgebras does not occur in these results, since super bialgebras are not bialgebras.

class TensorProducts(category, *args)#
class ElementMethods#

Bases: object

class ParentMethods#

Bases: object

extra_super_categories()#

EXAMPLES:

sage: Coalgebras(QQ).TensorProducts().extra_super_categories()
[Category of coalgebras over Rational Field]
sage: Coalgebras(QQ).TensorProducts().super_categories()
[Category of tensor products of vector spaces over Rational Field,
Category of coalgebras over Rational Field]


Meaning: a tensor product of coalgebras is a coalgebra

WithBasis#

alias of CoalgebrasWithBasis

class WithRealizations(category, *args)#
class ParentMethods#

Bases: object

coproduct(x)#

Return the coproduct of x.

EXAMPLES:

sage: N = NonCommutativeSymmetricFunctions(QQ)
sage: S = N.complete()
sage: N.coproduct.__module__
'sage.categories.coalgebras'
sage: N.coproduct(S)
S[] # S + S # S + S # S[]

counit(x)#

Return the counit of x.

EXAMPLES:

sage: Sym = SymmetricFunctions(QQ)
sage: s = Sym.schur()
sage: f = s[2,1]
sage: f.counit.__module__
'sage.categories.coalgebras'
sage: f.counit()
0

sage: N = NonCommutativeSymmetricFunctions(QQ)
sage: N.counit.__module__
'sage.categories.coalgebras'
sage: N.counit(N.one())
1
sage: x = N.an_element(); x
2*S[] + 2*S + 3*S[1, 1]
sage: N.counit(x)
2

super_categories()#

EXAMPLES:

sage: Coalgebras(QQ).super_categories()
[Category of vector spaces over Rational Field]