Highest Weight Crystals#
- class sage.categories.highest_weight_crystals.HighestWeightCrystalHomset(X, Y, category=None)[source]#
Bases:
CrystalHomset
The set of crystal morphisms from a highest weight crystal to another crystal.
See also
See
sage.categories.crystals.CrystalHomset
for more information.- Element[source]#
alias of
HighestWeightCrystalMorphism
- class sage.categories.highest_weight_crystals.HighestWeightCrystalMorphism(parent, on_gens, cartan_type=None, virtualization=None, scaling_factors=None, gens=None, check=True)[source]#
Bases:
CrystalMorphismByGenerators
A virtual crystal morphism whose domain is a highest weight crystal.
INPUT:
parent
– a homseton_gens
– a function or list that determines the image of the generators (if given a list, then this uses the order of the generators of the domain) of the domain underself
cartan_type
– (optional) a Cartan type; the default is the Cartan type of the domainvirtualization
– (optional) a dictionary whose keys are in the index set of the domain and whose values are lists of entries in the index set of the codomainscaling_factors
– (optional) a dictionary whose keys are in the index set of the domain and whose values are scaling factors for the weight, \(\varepsilon\) and \(\varphi\)gens
– (optional) a list of generators to define the morphism; the default is to use the highest weight vectors of the crystalcheck
– (default:True
) check if the crystal morphism is valid
- class sage.categories.highest_weight_crystals.HighestWeightCrystals[source]#
Bases:
Category_singleton
The category of highest weight crystals.
A crystal is highest weight if it is acyclic; in particular, every connected component has a unique highest weight element, and that element generate the component.
EXAMPLES:
sage: C = HighestWeightCrystals() sage: C Category of highest weight crystals sage: C.super_categories() [Category of crystals] sage: C.example() Highest weight crystal of type A_3 of highest weight omega_1
>>> from sage.all import * >>> C = HighestWeightCrystals() >>> C Category of highest weight crystals >>> C.super_categories() [Category of crystals] >>> C.example() Highest weight crystal of type A_3 of highest weight omega_1
- class ElementMethods[source]#
Bases:
object
- string_parameters(word=None)[source]#
Return the string parameters of
self
corresponding to the reduced wordword
.Given a reduced expression \(w = s_{i_1} \cdots s_{i_k}\), the string parameters of \(b \in B\) corresponding to \(w\) are \((a_1, \ldots, a_k)\) such that
\[\begin{split}\begin{aligned} e_{i_m}^{a_m} \cdots e_{i_1}^{a_1} b & \neq 0 \\ e_{i_m}^{a_m+1} \cdots e_{i_1}^{a_1} b & = 0 \end{aligned}\end{split}\]for all \(1 \leq m \leq k\).
For connected components isomorphic to \(B(\lambda)\) or \(B(\infty)\), if \(w = w_0\) is the longest element of the Weyl group, then the path determined by the string parametrization terminates at the highest weight vector.
INPUT:
word
– a word in the alphabet of the index set; if not specified and we are in finite type, then this will be some reduced expression for the long element determined by the Weyl group
EXAMPLES:
sage: B = crystals.infinity.NakajimaMonomials(['A',3]) sage: mg = B.highest_weight_vector() sage: w0 = [1,2,1,3,2,1] sage: mg.string_parameters(w0) [0, 0, 0, 0, 0, 0] sage: mg.f_string([1]).string_parameters(w0) [1, 0, 0, 0, 0, 0] sage: mg.f_string([1,1,1]).string_parameters(w0) [3, 0, 0, 0, 0, 0] sage: mg.f_string([1,1,1,2,2]).string_parameters(w0) [1, 2, 2, 0, 0, 0] sage: mg.f_string([1,1,1,2,2]) == mg.f_string([1,1,2,2,1]) True sage: x = mg.f_string([1,1,1,2,2,1,3,3,2,1,1,1]) sage: x.string_parameters(w0) [4, 1, 1, 2, 2, 2] sage: x.string_parameters([3,2,1,3,2,3]) [2, 3, 7, 0, 0, 0] sage: x == mg.f_string([1]*7 + [2]*3 + [3]*2) True
>>> from sage.all import * >>> B = crystals.infinity.NakajimaMonomials(['A',Integer(3)]) >>> mg = B.highest_weight_vector() >>> w0 = [Integer(1),Integer(2),Integer(1),Integer(3),Integer(2),Integer(1)] >>> mg.string_parameters(w0) [0, 0, 0, 0, 0, 0] >>> mg.f_string([Integer(1)]).string_parameters(w0) [1, 0, 0, 0, 0, 0] >>> mg.f_string([Integer(1),Integer(1),Integer(1)]).string_parameters(w0) [3, 0, 0, 0, 0, 0] >>> mg.f_string([Integer(1),Integer(1),Integer(1),Integer(2),Integer(2)]).string_parameters(w0) [1, 2, 2, 0, 0, 0] >>> mg.f_string([Integer(1),Integer(1),Integer(1),Integer(2),Integer(2)]) == mg.f_string([Integer(1),Integer(1),Integer(2),Integer(2),Integer(1)]) True >>> x = mg.f_string([Integer(1),Integer(1),Integer(1),Integer(2),Integer(2),Integer(1),Integer(3),Integer(3),Integer(2),Integer(1),Integer(1),Integer(1)]) >>> x.string_parameters(w0) [4, 1, 1, 2, 2, 2] >>> x.string_parameters([Integer(3),Integer(2),Integer(1),Integer(3),Integer(2),Integer(3)]) [2, 3, 7, 0, 0, 0] >>> x == mg.f_string([Integer(1)]*Integer(7) + [Integer(2)]*Integer(3) + [Integer(3)]*Integer(2)) True
sage: B = crystals.infinity.Tableaux("A5") sage: b = B(rows=[[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,6,6,6,6,6,6], ....: [2,2,2,2,2,2,2,2,2,4,5,5,5,6], ....: [3,3,3,3,3,3,3,5], ....: [4,4,4,6,6,6], ....: [5,6]]) sage: b.string_parameters([1,2,1,3,2,1,4,3,2,1,5,4,3,2,1]) [0, 1, 1, 1, 1, 0, 4, 4, 3, 0, 11, 10, 7, 7, 6] sage: B = crystals.infinity.Tableaux("G2") sage: b = B(rows=[[1,1,1,1,1,3,3,0,-3,-3,-2,-2,-1,-1,-1,-1],[2,3,3,3]]) sage: b.string_parameters([2,1,2,1,2,1]) [5, 13, 11, 15, 4, 4] sage: b.string_parameters([1,2,1,2,1,2]) [7, 12, 15, 8, 10, 0]
>>> from sage.all import * >>> B = crystals.infinity.Tableaux("A5") >>> b = B(rows=[[Integer(1),Integer(1),Integer(1),Integer(1),Integer(1),Integer(1),Integer(1),Integer(1),Integer(1),Integer(1),Integer(1),Integer(1),Integer(1),Integer(1),Integer(1),Integer(3),Integer(6),Integer(6),Integer(6),Integer(6),Integer(6),Integer(6)], ... [Integer(2),Integer(2),Integer(2),Integer(2),Integer(2),Integer(2),Integer(2),Integer(2),Integer(2),Integer(4),Integer(5),Integer(5),Integer(5),Integer(6)], ... [Integer(3),Integer(3),Integer(3),Integer(3),Integer(3),Integer(3),Integer(3),Integer(5)], ... [Integer(4),Integer(4),Integer(4),Integer(6),Integer(6),Integer(6)], ... [Integer(5),Integer(6)]]) >>> b.string_parameters([Integer(1),Integer(2),Integer(1),Integer(3),Integer(2),Integer(1),Integer(4),Integer(3),Integer(2),Integer(1),Integer(5),Integer(4),Integer(3),Integer(2),Integer(1)]) [0, 1, 1, 1, 1, 0, 4, 4, 3, 0, 11, 10, 7, 7, 6] >>> B = crystals.infinity.Tableaux("G2") >>> b = B(rows=[[Integer(1),Integer(1),Integer(1),Integer(1),Integer(1),Integer(3),Integer(3),Integer(0),-Integer(3),-Integer(3),-Integer(2),-Integer(2),-Integer(1),-Integer(1),-Integer(1),-Integer(1)],[Integer(2),Integer(3),Integer(3),Integer(3)]]) >>> b.string_parameters([Integer(2),Integer(1),Integer(2),Integer(1),Integer(2),Integer(1)]) [5, 13, 11, 15, 4, 4] >>> b.string_parameters([Integer(1),Integer(2),Integer(1),Integer(2),Integer(1),Integer(2)]) [7, 12, 15, 8, 10, 0]
sage: C = crystals.Tableaux(['C',2], shape=[2,1]) sage: mg = C.highest_weight_vector() sage: lw = C.lowest_weight_vectors()[0] sage: lw.string_parameters([1,2,1,2]) [1, 2, 3, 1] sage: lw.string_parameters([2,1,2,1]) [1, 3, 2, 1] sage: lw.e_string([2,1,1,1,2,2,1]) == mg True sage: lw.e_string([1,2,2,1,1,1,2]) == mg True
>>> from sage.all import * >>> C = crystals.Tableaux(['C',Integer(2)], shape=[Integer(2),Integer(1)]) >>> mg = C.highest_weight_vector() >>> lw = C.lowest_weight_vectors()[Integer(0)] >>> lw.string_parameters([Integer(1),Integer(2),Integer(1),Integer(2)]) [1, 2, 3, 1] >>> lw.string_parameters([Integer(2),Integer(1),Integer(2),Integer(1)]) [1, 3, 2, 1] >>> lw.e_string([Integer(2),Integer(1),Integer(1),Integer(1),Integer(2),Integer(2),Integer(1)]) == mg True >>> lw.e_string([Integer(1),Integer(2),Integer(2),Integer(1),Integer(1),Integer(1),Integer(2)]) == mg True
- class ParentMethods[source]#
Bases:
object
- connected_components_generators()[source]#
Returns the highest weight vectors of
self
This default implementation selects among the module generators those that are highest weight, and caches the result. A crystal element \(b\) is highest weight if \(e_i(b)=0\) for all \(i\) in the index set.
EXAMPLES:
sage: C = crystals.Letters(['A',5]) sage: C.highest_weight_vectors() (1,)
>>> from sage.all import * >>> C = crystals.Letters(['A',Integer(5)]) >>> C.highest_weight_vectors() (1,)
sage: C = crystals.Letters(['A',2]) sage: T = crystals.TensorProduct(C, C, C, generators=[[C(2),C(1),C(1)], ....: [C(1),C(2),C(1)]]) sage: T.highest_weight_vectors() ([2, 1, 1], [1, 2, 1])
>>> from sage.all import * >>> C = crystals.Letters(['A',Integer(2)]) >>> T = crystals.TensorProduct(C, C, C, generators=[[C(Integer(2)),C(Integer(1)),C(Integer(1))], ... [C(Integer(1)),C(Integer(2)),C(Integer(1))]]) >>> T.highest_weight_vectors() ([2, 1, 1], [1, 2, 1])
- digraph(subset=None, index_set=None, depth=None)[source]#
Return the DiGraph associated to
self
.INPUT:
subset
– (optional) a subset of vertices for which the digraph should be constructedindex_set
– (optional) the index set to draw arrowsdepth
– the depth to draw; optional only for finite crystals
EXAMPLES:
sage: T = crystals.Tableaux(['A',2], shape=[2,1]) sage: T.digraph() Digraph on 8 vertices sage: S = T.subcrystal(max_depth=2) sage: len(S) 5 sage: G = T.digraph(subset=list(S)) sage: G.is_isomorphic(T.digraph(depth=2), edge_labels=True) True
>>> from sage.all import * >>> T = crystals.Tableaux(['A',Integer(2)], shape=[Integer(2),Integer(1)]) >>> T.digraph() Digraph on 8 vertices >>> S = T.subcrystal(max_depth=Integer(2)) >>> len(S) 5 >>> G = T.digraph(subset=list(S)) >>> G.is_isomorphic(T.digraph(depth=Integer(2)), edge_labels=True) True
- highest_weight_vector()[source]#
Returns the highest weight vector if there is a single one; otherwise, raises an error.
Caveat: this assumes that
highest_weight_vectors()
returns a list or tuple.EXAMPLES:
sage: C = crystals.Letters(['A',5]) sage: C.highest_weight_vector() 1
>>> from sage.all import * >>> C = crystals.Letters(['A',Integer(5)]) >>> C.highest_weight_vector() 1
- highest_weight_vectors()[source]#
Returns the highest weight vectors of
self
This default implementation selects among the module generators those that are highest weight, and caches the result. A crystal element \(b\) is highest weight if \(e_i(b)=0\) for all \(i\) in the index set.
EXAMPLES:
sage: C = crystals.Letters(['A',5]) sage: C.highest_weight_vectors() (1,)
>>> from sage.all import * >>> C = crystals.Letters(['A',Integer(5)]) >>> C.highest_weight_vectors() (1,)
sage: C = crystals.Letters(['A',2]) sage: T = crystals.TensorProduct(C, C, C, generators=[[C(2),C(1),C(1)], ....: [C(1),C(2),C(1)]]) sage: T.highest_weight_vectors() ([2, 1, 1], [1, 2, 1])
>>> from sage.all import * >>> C = crystals.Letters(['A',Integer(2)]) >>> T = crystals.TensorProduct(C, C, C, generators=[[C(Integer(2)),C(Integer(1)),C(Integer(1))], ... [C(Integer(1)),C(Integer(2)),C(Integer(1))]]) >>> T.highest_weight_vectors() ([2, 1, 1], [1, 2, 1])
- lowest_weight_vectors()[source]#
Return the lowest weight vectors of
self
.This default implementation selects among all elements of the crystal those that are lowest weight, and cache the result. A crystal element \(b\) is lowest weight if \(f_i(b)=0\) for all \(i\) in the index set.
EXAMPLES:
sage: C = crystals.Letters(['A',5]) sage: C.lowest_weight_vectors() (6,)
>>> from sage.all import * >>> C = crystals.Letters(['A',Integer(5)]) >>> C.lowest_weight_vectors() (6,)
sage: C = crystals.Letters(['A',2]) sage: T = crystals.TensorProduct(C, C, C,generators=[[C(2),C(1),C(1)], ....: [C(1),C(2),C(1)]]) sage: T.lowest_weight_vectors() ([3, 2, 3], [3, 3, 2])
>>> from sage.all import * >>> C = crystals.Letters(['A',Integer(2)]) >>> T = crystals.TensorProduct(C, C, C,generators=[[C(Integer(2)),C(Integer(1)),C(Integer(1))], ... [C(Integer(1)),C(Integer(2)),C(Integer(1))]]) >>> T.lowest_weight_vectors() ([3, 2, 3], [3, 3, 2])
- q_dimension(q=None, prec=None, use_product=False)[source]#
Return the \(q\)-dimension of
self
.Let \(B(\lambda)\) denote a highest weight crystal. Recall that the degree of the \(\mu\)-weight space of \(B(\lambda)\) (under the principal gradation) is equal to \(\langle \rho^{\vee}, \lambda - \mu \rangle\) where \(\langle \rho^{\vee}, \alpha_i \rangle = 1\) for all \(i \in I\) (in particular, take \(\rho^{\vee} = \sum_{i \in I} h_i\)).
The \(q\)-dimension of a highest weight crystal \(B(\lambda)\) is defined as
\[\dim_q B(\lambda) := \sum_{j \geq 0} \dim(B_j) q^j,\]where \(B_j\) denotes the degree \(j\) portion of \(B(\lambda)\). This can be expressed as the product
\[\dim_q B(\lambda) = \prod_{\alpha^{\vee} \in \Delta_+^{\vee}} \left( \frac{1 - q^{\langle \lambda + \rho, \alpha^{\vee} \rangle}}{1 - q^{\langle \rho, \alpha^{\vee} \rangle}} \right)^{\mathrm{mult}\, \alpha},\]where \(\Delta_+^{\vee}\) denotes the set of positive coroots. Taking the limit as \(q \to 1\) gives the dimension of \(B(\lambda)\). For more information, see [Ka1990] Section 10.10.
INPUT:
q
– the (generic) parameter \(q\)prec
– (default:None
) The precision of the power series ring to use if the crystal is not known to be finite (i.e. the number of terms returned). IfNone
, then the result is returned as a lazy power series.use_product
– (default:False
) if we have a finite crystal andTrue
, use the product formula
EXAMPLES:
sage: C = crystals.Tableaux(['A',2], shape=[2,1]) sage: qdim = C.q_dimension(); qdim q^4 + 2*q^3 + 2*q^2 + 2*q + 1 sage: qdim(1) 8 sage: len(C) == qdim(1) True sage: C.q_dimension(use_product=True) == qdim True sage: C.q_dimension(prec=20) q^4 + 2*q^3 + 2*q^2 + 2*q + 1 sage: C.q_dimension(prec=2) 2*q + 1 sage: R.<t> = QQ[] sage: C.q_dimension(q=t^2) t^8 + 2*t^6 + 2*t^4 + 2*t^2 + 1 sage: C = crystals.Tableaux(['A',2], shape=[5,2]) sage: C.q_dimension() q^10 + 2*q^9 + 4*q^8 + 5*q^7 + 6*q^6 + 6*q^5 + 6*q^4 + 5*q^3 + 4*q^2 + 2*q + 1 sage: C = crystals.Tableaux(['B',2], shape=[2,1]) sage: qdim = C.q_dimension(); qdim q^10 + 2*q^9 + 3*q^8 + 4*q^7 + 5*q^6 + 5*q^5 + 5*q^4 + 4*q^3 + 3*q^2 + 2*q + 1 sage: qdim == C.q_dimension(use_product=True) True sage: C = crystals.Tableaux(['D',4], shape=[2,1]) sage: C.q_dimension() q^16 + 2*q^15 + 4*q^14 + 7*q^13 + 10*q^12 + 13*q^11 + 16*q^10 + 18*q^9 + 18*q^8 + 18*q^7 + 16*q^6 + 13*q^5 + 10*q^4 + 7*q^3 + 4*q^2 + 2*q + 1
>>> from sage.all import * >>> C = crystals.Tableaux(['A',Integer(2)], shape=[Integer(2),Integer(1)]) >>> qdim = C.q_dimension(); qdim q^4 + 2*q^3 + 2*q^2 + 2*q + 1 >>> qdim(Integer(1)) 8 >>> len(C) == qdim(Integer(1)) True >>> C.q_dimension(use_product=True) == qdim True >>> C.q_dimension(prec=Integer(20)) q^4 + 2*q^3 + 2*q^2 + 2*q + 1 >>> C.q_dimension(prec=Integer(2)) 2*q + 1 >>> R = QQ['t']; (t,) = R._first_ngens(1) >>> C.q_dimension(q=t**Integer(2)) t^8 + 2*t^6 + 2*t^4 + 2*t^2 + 1 >>> C = crystals.Tableaux(['A',Integer(2)], shape=[Integer(5),Integer(2)]) >>> C.q_dimension() q^10 + 2*q^9 + 4*q^8 + 5*q^7 + 6*q^6 + 6*q^5 + 6*q^4 + 5*q^3 + 4*q^2 + 2*q + 1 >>> C = crystals.Tableaux(['B',Integer(2)], shape=[Integer(2),Integer(1)]) >>> qdim = C.q_dimension(); qdim q^10 + 2*q^9 + 3*q^8 + 4*q^7 + 5*q^6 + 5*q^5 + 5*q^4 + 4*q^3 + 3*q^2 + 2*q + 1 >>> qdim == C.q_dimension(use_product=True) True >>> C = crystals.Tableaux(['D',Integer(4)], shape=[Integer(2),Integer(1)]) >>> C.q_dimension() q^16 + 2*q^15 + 4*q^14 + 7*q^13 + 10*q^12 + 13*q^11 + 16*q^10 + 18*q^9 + 18*q^8 + 18*q^7 + 16*q^6 + 13*q^5 + 10*q^4 + 7*q^3 + 4*q^2 + 2*q + 1
We check with a finite tensor product:
sage: TP = crystals.TensorProduct(C, C) sage: TP.cardinality() 25600 sage: qdim = TP.q_dimension(use_product=True); qdim # long time q^32 + 2*q^31 + 8*q^30 + 15*q^29 + 34*q^28 + 63*q^27 + 110*q^26 + 175*q^25 + 276*q^24 + 389*q^23 + 550*q^22 + 725*q^21 + 930*q^20 + 1131*q^19 + 1362*q^18 + 1548*q^17 + 1736*q^16 + 1858*q^15 + 1947*q^14 + 1944*q^13 + 1918*q^12 + 1777*q^11 + 1628*q^10 + 1407*q^9 + 1186*q^8 + 928*q^7 + 720*q^6 + 498*q^5 + 342*q^4 + 201*q^3 + 117*q^2 + 48*q + 26 sage: qdim(1) # long time 25600 sage: TP.q_dimension() == qdim # long time True
>>> from sage.all import * >>> TP = crystals.TensorProduct(C, C) >>> TP.cardinality() 25600 >>> qdim = TP.q_dimension(use_product=True); qdim # long time q^32 + 2*q^31 + 8*q^30 + 15*q^29 + 34*q^28 + 63*q^27 + 110*q^26 + 175*q^25 + 276*q^24 + 389*q^23 + 550*q^22 + 725*q^21 + 930*q^20 + 1131*q^19 + 1362*q^18 + 1548*q^17 + 1736*q^16 + 1858*q^15 + 1947*q^14 + 1944*q^13 + 1918*q^12 + 1777*q^11 + 1628*q^10 + 1407*q^9 + 1186*q^8 + 928*q^7 + 720*q^6 + 498*q^5 + 342*q^4 + 201*q^3 + 117*q^2 + 48*q + 26 >>> qdim(Integer(1)) # long time 25600 >>> TP.q_dimension() == qdim # long time True
The \(q\)-dimensions of infinite crystals are returned as formal power series:
sage: C = crystals.LSPaths(['A',2,1], [1,0,0]) sage: C.q_dimension(prec=5) 1 + q + 2*q^2 + 2*q^3 + 4*q^4 + O(q^5) sage: C.q_dimension(prec=10) 1 + q + 2*q^2 + 2*q^3 + 4*q^4 + 5*q^5 + 7*q^6 + 9*q^7 + 13*q^8 + 16*q^9 + O(q^10) sage: qdim = C.q_dimension(); qdim 1 + q + 2*q^2 + 2*q^3 + 4*q^4 + 5*q^5 + 7*q^6 + O(q^7) sage: qdim[:16] [1, 1, 2, 2, 4, 5, 7, 9, 13, 16, 22, 27, 36, 44, 57, 70]
>>> from sage.all import * >>> C = crystals.LSPaths(['A',Integer(2),Integer(1)], [Integer(1),Integer(0),Integer(0)]) >>> C.q_dimension(prec=Integer(5)) 1 + q + 2*q^2 + 2*q^3 + 4*q^4 + O(q^5) >>> C.q_dimension(prec=Integer(10)) 1 + q + 2*q^2 + 2*q^3 + 4*q^4 + 5*q^5 + 7*q^6 + 9*q^7 + 13*q^8 + 16*q^9 + O(q^10) >>> qdim = C.q_dimension(); qdim 1 + q + 2*q^2 + 2*q^3 + 4*q^4 + 5*q^5 + 7*q^6 + O(q^7) >>> qdim[:Integer(16)] [1, 1, 2, 2, 4, 5, 7, 9, 13, 16, 22, 27, 36, 44, 57, 70]
- class TensorProducts(category, *args)[source]#
Bases:
TensorProductsCategory
The category of highest weight crystals constructed by tensor product of highest weight crystals.
- class ParentMethods[source]#
Bases:
object
Implements operations on tensor products of crystals.
- highest_weight_vectors()[source]#
Return the highest weight vectors of
self
.This works by using a backtracing algorithm since if \(b_2 \otimes b_1\) is highest weight then \(b_1\) is highest weight.
EXAMPLES:
sage: C = crystals.Tableaux(['D',4], shape=[2,2]) sage: D = crystals.Tableaux(['D',4], shape=[1]) sage: T = crystals.TensorProduct(D, C) sage: T.highest_weight_vectors() ([[[1]], [[1, 1], [2, 2]]], [[[3]], [[1, 1], [2, 2]]], [[[-2]], [[1, 1], [2, 2]]]) sage: L = filter(lambda x: x.is_highest_weight(), T) sage: tuple(L) == T.highest_weight_vectors() True
>>> from sage.all import * >>> C = crystals.Tableaux(['D',Integer(4)], shape=[Integer(2),Integer(2)]) >>> D = crystals.Tableaux(['D',Integer(4)], shape=[Integer(1)]) >>> T = crystals.TensorProduct(D, C) >>> T.highest_weight_vectors() ([[[1]], [[1, 1], [2, 2]]], [[[3]], [[1, 1], [2, 2]]], [[[-2]], [[1, 1], [2, 2]]]) >>> L = filter(lambda x: x.is_highest_weight(), T) >>> tuple(L) == T.highest_weight_vectors() True
- highest_weight_vectors_iterator()[source]#
Iterate over the highest weight vectors of
self
.This works by using a backtracing algorithm since if \(b_2 \otimes b_1\) is highest weight then \(b_1\) is highest weight.
EXAMPLES:
sage: C = crystals.Tableaux(['D',4], shape=[2,2]) sage: D = crystals.Tableaux(['D',4], shape=[1]) sage: T = crystals.TensorProduct(D, C) sage: tuple(T.highest_weight_vectors_iterator()) ([[[1]], [[1, 1], [2, 2]]], [[[3]], [[1, 1], [2, 2]]], [[[-2]], [[1, 1], [2, 2]]]) sage: L = filter(lambda x: x.is_highest_weight(), T) sage: tuple(L) == tuple(T.highest_weight_vectors_iterator()) True
>>> from sage.all import * >>> C = crystals.Tableaux(['D',Integer(4)], shape=[Integer(2),Integer(2)]) >>> D = crystals.Tableaux(['D',Integer(4)], shape=[Integer(1)]) >>> T = crystals.TensorProduct(D, C) >>> tuple(T.highest_weight_vectors_iterator()) ([[[1]], [[1, 1], [2, 2]]], [[[3]], [[1, 1], [2, 2]]], [[[-2]], [[1, 1], [2, 2]]]) >>> L = filter(lambda x: x.is_highest_weight(), T) >>> tuple(L) == tuple(T.highest_weight_vectors_iterator()) True
- additional_structure()[source]#
Return
None
.Indeed, the category of highest weight crystals defines no additional structure: it only guarantees the existence of a unique highest weight element in each component.
See also
Todo
Should this category be a
CategoryWithAxiom
?EXAMPLES:
sage: HighestWeightCrystals().additional_structure()
>>> from sage.all import * >>> HighestWeightCrystals().additional_structure()
- example()[source]#
Returns an example of highest weight crystals, as per
Category.example()
.EXAMPLES:
sage: B = HighestWeightCrystals().example(); B Highest weight crystal of type A_3 of highest weight omega_1
>>> from sage.all import * >>> B = HighestWeightCrystals().example(); B Highest weight crystal of type A_3 of highest weight omega_1