Coalgebras with basis¶
- class sage.categories.coalgebras_with_basis.CoalgebrasWithBasis(base_category)[source]¶
- Bases: - CategoryWithAxiom_over_base_ring- The category of coalgebras with a distinguished basis. - EXAMPLES: - sage: CoalgebrasWithBasis(ZZ) Category of coalgebras with basis over Integer Ring sage: sorted(CoalgebrasWithBasis(ZZ).super_categories(), key=str) [Category of coalgebras over Integer Ring, Category of modules with basis over Integer Ring] - >>> from sage.all import * >>> CoalgebrasWithBasis(ZZ) Category of coalgebras with basis over Integer Ring >>> sorted(CoalgebrasWithBasis(ZZ).super_categories(), key=str) [Category of coalgebras over Integer Ring, Category of modules with basis over Integer Ring] - class ElementMethods[source]¶
- Bases: - object- coproduct_iterated(n=1)[source]¶
- Apply - ncoproducts to- self.- Todo - Remove dependency on - modules_with_basismethods.- EXAMPLES: - sage: Psi = NonCommutativeSymmetricFunctions(QQ).Psi() # needs sage.combinat sage.modules sage: Psi[2,2].coproduct_iterated(0) # needs sage.combinat sage.modules Psi[2, 2] sage: Psi[2,2].coproduct_iterated(2) # needs sage.combinat sage.modules Psi[] # Psi[] # Psi[2, 2] + 2*Psi[] # Psi[2] # Psi[2] + Psi[] # Psi[2, 2] # Psi[] + 2*Psi[2] # Psi[] # Psi[2] + 2*Psi[2] # Psi[2] # Psi[] + Psi[2, 2] # Psi[] # Psi[] - >>> from sage.all import * >>> Psi = NonCommutativeSymmetricFunctions(QQ).Psi() # needs sage.combinat sage.modules >>> Psi[Integer(2),Integer(2)].coproduct_iterated(Integer(0)) # needs sage.combinat sage.modules Psi[2, 2] >>> Psi[Integer(2),Integer(2)].coproduct_iterated(Integer(2)) # needs sage.combinat sage.modules Psi[] # Psi[] # Psi[2, 2] + 2*Psi[] # Psi[2] # Psi[2] + Psi[] # Psi[2, 2] # Psi[] + 2*Psi[2] # Psi[] # Psi[2] + 2*Psi[2] # Psi[2] # Psi[] + Psi[2, 2] # Psi[] # Psi[] 
 
 - class Filtered(base_category)[source]¶
- Bases: - FilteredModulesCategory- Category of filtered coalgebras. 
 - Graded[source]¶
- alias of - GradedCoalgebrasWithBasis
 - class ParentMethods[source]¶
- Bases: - object- coproduct()[source]¶
- If - coproduct_on_basis()is available, construct the coproduct morphism from- selfto- self\(\otimes\)- selfby extending it by linearity. Otherwise, use- coproduct_by_coercion(), if available.- EXAMPLES: - sage: # needs sage.groups sage.modules sage: A = HopfAlgebrasWithBasis(QQ).example(); A An example of Hopf algebra with basis: the group algebra of the Dihedral group of order 6 as a permutation group over Rational Field sage: a, b = A.algebra_generators() sage: a, A.coproduct(a) (B[(1,2,3)], B[(1,2,3)] # B[(1,2,3)]) sage: b, A.coproduct(b) (B[(1,3)], B[(1,3)] # B[(1,3)]) - >>> from sage.all import * >>> # needs sage.groups sage.modules >>> A = HopfAlgebrasWithBasis(QQ).example(); A An example of Hopf algebra with basis: the group algebra of the Dihedral group of order 6 as a permutation group over Rational Field >>> a, b = A.algebra_generators() >>> a, A.coproduct(a) (B[(1,2,3)], B[(1,2,3)] # B[(1,2,3)]) >>> b, A.coproduct(b) (B[(1,3)], B[(1,3)] # B[(1,3)]) 
 - coproduct_on_basis(i)[source]¶
- The coproduct of the algebra on the basis (optional). - INPUT: - i– the indices of an element of the basis of- self
 - Returns the coproduct of the corresponding basis elements If implemented, the coproduct of the algebra is defined from it by linearity. - EXAMPLES: - sage: A = HopfAlgebrasWithBasis(QQ).example(); A # needs sage.groups sage.modules An example of Hopf algebra with basis: the group algebra of the Dihedral group of order 6 as a permutation group over Rational Field sage: (a, b) = A._group.gens() # needs sage.groups sage.modules sage: A.coproduct_on_basis(a) # needs sage.groups sage.modules B[(1,2,3)] # B[(1,2,3)] - >>> from sage.all import * >>> A = HopfAlgebrasWithBasis(QQ).example(); A # needs sage.groups sage.modules An example of Hopf algebra with basis: the group algebra of the Dihedral group of order 6 as a permutation group over Rational Field >>> (a, b) = A._group.gens() # needs sage.groups sage.modules >>> A.coproduct_on_basis(a) # needs sage.groups sage.modules B[(1,2,3)] # B[(1,2,3)] 
 - counit()[source]¶
- If - counit_on_basis()is available, construct the counit morphism from- selfto- self\(\otimes\)- selfby extending it by linearity- EXAMPLES: - sage: # needs sage.groups sage.modules sage: A = HopfAlgebrasWithBasis(QQ).example(); A An example of Hopf algebra with basis: the group algebra of the Dihedral group of order 6 as a permutation group over Rational Field sage: a, b = A.algebra_generators() sage: a, A.counit(a) (B[(1,2,3)], 1) sage: b, A.counit(b) (B[(1,3)], 1) - >>> from sage.all import * >>> # needs sage.groups sage.modules >>> A = HopfAlgebrasWithBasis(QQ).example(); A An example of Hopf algebra with basis: the group algebra of the Dihedral group of order 6 as a permutation group over Rational Field >>> a, b = A.algebra_generators() >>> a, A.counit(a) (B[(1,2,3)], 1) >>> b, A.counit(b) (B[(1,3)], 1) 
 - counit_on_basis(i)[source]¶
- The counit of the algebra on the basis (optional). - INPUT: - i– the indices of an element of the basis of- self
 - Returns the counit of the corresponding basis elements If implemented, the counit of the algebra is defined from it by linearity. - EXAMPLES: - sage: A = HopfAlgebrasWithBasis(QQ).example(); A # needs sage.groups sage.modules An example of Hopf algebra with basis: the group algebra of the Dihedral group of order 6 as a permutation group over Rational Field sage: (a, b) = A._group.gens() # needs sage.groups sage.modules sage: A.counit_on_basis(a) # needs sage.groups sage.modules 1 - >>> from sage.all import * >>> A = HopfAlgebrasWithBasis(QQ).example(); A # needs sage.groups sage.modules An example of Hopf algebra with basis: the group algebra of the Dihedral group of order 6 as a permutation group over Rational Field >>> (a, b) = A._group.gens() # needs sage.groups sage.modules >>> A.counit_on_basis(a) # needs sage.groups sage.modules 1 
 
 - class Super(base_category)[source]¶
- Bases: - SuperModulesCategory- extra_super_categories()[source]¶
- EXAMPLES: - sage: C = Coalgebras(ZZ).WithBasis().Super() sage: sorted(C.super_categories(), key=str) # indirect doctest [Category of graded coalgebras with basis over Integer Ring, Category of super coalgebras over Integer Ring, Category of super modules with basis over Integer Ring] - >>> from sage.all import * >>> C = Coalgebras(ZZ).WithBasis().Super() >>> sorted(C.super_categories(), key=str) # indirect doctest [Category of graded coalgebras with basis over Integer Ring, Category of super coalgebras over Integer Ring, Category of super modules with basis over Integer Ring]