Coalgebras with basis¶
- class sage.categories.coalgebras_with_basis.CoalgebrasWithBasis(base_category)[source]¶
Bases:
CategoryWithAxiom_over_base_ring
The category of coalgebras with a distinguished basis.
EXAMPLES:
sage: CoalgebrasWithBasis(ZZ) Category of coalgebras with basis over Integer Ring sage: sorted(CoalgebrasWithBasis(ZZ).super_categories(), key=str) [Category of coalgebras over Integer Ring, Category of modules with basis over Integer Ring]
>>> from sage.all import * >>> CoalgebrasWithBasis(ZZ) Category of coalgebras with basis over Integer Ring >>> sorted(CoalgebrasWithBasis(ZZ).super_categories(), key=str) [Category of coalgebras over Integer Ring, Category of modules with basis over Integer Ring]
- class ElementMethods[source]¶
Bases:
object
- coproduct_iterated(n=1)[source]¶
Apply
n
coproducts toself
.Todo
Remove dependency on
modules_with_basis
methods.EXAMPLES:
sage: Psi = NonCommutativeSymmetricFunctions(QQ).Psi() # needs sage.combinat sage.modules sage: Psi[2,2].coproduct_iterated(0) # needs sage.combinat sage.modules Psi[2, 2] sage: Psi[2,2].coproduct_iterated(2) # needs sage.combinat sage.modules Psi[] # Psi[] # Psi[2, 2] + 2*Psi[] # Psi[2] # Psi[2] + Psi[] # Psi[2, 2] # Psi[] + 2*Psi[2] # Psi[] # Psi[2] + 2*Psi[2] # Psi[2] # Psi[] + Psi[2, 2] # Psi[] # Psi[]
>>> from sage.all import * >>> Psi = NonCommutativeSymmetricFunctions(QQ).Psi() # needs sage.combinat sage.modules >>> Psi[Integer(2),Integer(2)].coproduct_iterated(Integer(0)) # needs sage.combinat sage.modules Psi[2, 2] >>> Psi[Integer(2),Integer(2)].coproduct_iterated(Integer(2)) # needs sage.combinat sage.modules Psi[] # Psi[] # Psi[2, 2] + 2*Psi[] # Psi[2] # Psi[2] + Psi[] # Psi[2, 2] # Psi[] + 2*Psi[2] # Psi[] # Psi[2] + 2*Psi[2] # Psi[2] # Psi[] + Psi[2, 2] # Psi[] # Psi[]
- class Filtered(base_category)[source]¶
Bases:
FilteredModulesCategory
Category of filtered coalgebras.
- Graded[source]¶
alias of
GradedCoalgebrasWithBasis
- class ParentMethods[source]¶
Bases:
object
- coproduct()[source]¶
If
coproduct_on_basis()
is available, construct the coproduct morphism fromself
toself
\(\otimes\)self
by extending it by linearity. Otherwise, usecoproduct_by_coercion()
, if available.EXAMPLES:
sage: # needs sage.groups sage.modules sage: A = HopfAlgebrasWithBasis(QQ).example(); A An example of Hopf algebra with basis: the group algebra of the Dihedral group of order 6 as a permutation group over Rational Field sage: a, b = A.algebra_generators() sage: a, A.coproduct(a) (B[(1,2,3)], B[(1,2,3)] # B[(1,2,3)]) sage: b, A.coproduct(b) (B[(1,3)], B[(1,3)] # B[(1,3)])
>>> from sage.all import * >>> # needs sage.groups sage.modules >>> A = HopfAlgebrasWithBasis(QQ).example(); A An example of Hopf algebra with basis: the group algebra of the Dihedral group of order 6 as a permutation group over Rational Field >>> a, b = A.algebra_generators() >>> a, A.coproduct(a) (B[(1,2,3)], B[(1,2,3)] # B[(1,2,3)]) >>> b, A.coproduct(b) (B[(1,3)], B[(1,3)] # B[(1,3)])
- coproduct_on_basis(i)[source]¶
The coproduct of the algebra on the basis (optional).
INPUT:
i
– the indices of an element of the basis ofself
Returns the coproduct of the corresponding basis elements If implemented, the coproduct of the algebra is defined from it by linearity.
EXAMPLES:
sage: A = HopfAlgebrasWithBasis(QQ).example(); A # needs sage.groups sage.modules An example of Hopf algebra with basis: the group algebra of the Dihedral group of order 6 as a permutation group over Rational Field sage: (a, b) = A._group.gens() # needs sage.groups sage.modules sage: A.coproduct_on_basis(a) # needs sage.groups sage.modules B[(1,2,3)] # B[(1,2,3)]
>>> from sage.all import * >>> A = HopfAlgebrasWithBasis(QQ).example(); A # needs sage.groups sage.modules An example of Hopf algebra with basis: the group algebra of the Dihedral group of order 6 as a permutation group over Rational Field >>> (a, b) = A._group.gens() # needs sage.groups sage.modules >>> A.coproduct_on_basis(a) # needs sage.groups sage.modules B[(1,2,3)] # B[(1,2,3)]
- counit()[source]¶
If
counit_on_basis()
is available, construct the counit morphism fromself
toself
\(\otimes\)self
by extending it by linearityEXAMPLES:
sage: # needs sage.groups sage.modules sage: A = HopfAlgebrasWithBasis(QQ).example(); A An example of Hopf algebra with basis: the group algebra of the Dihedral group of order 6 as a permutation group over Rational Field sage: a, b = A.algebra_generators() sage: a, A.counit(a) (B[(1,2,3)], 1) sage: b, A.counit(b) (B[(1,3)], 1)
>>> from sage.all import * >>> # needs sage.groups sage.modules >>> A = HopfAlgebrasWithBasis(QQ).example(); A An example of Hopf algebra with basis: the group algebra of the Dihedral group of order 6 as a permutation group over Rational Field >>> a, b = A.algebra_generators() >>> a, A.counit(a) (B[(1,2,3)], 1) >>> b, A.counit(b) (B[(1,3)], 1)
- counit_on_basis(i)[source]¶
The counit of the algebra on the basis (optional).
INPUT:
i
– the indices of an element of the basis ofself
Returns the counit of the corresponding basis elements If implemented, the counit of the algebra is defined from it by linearity.
EXAMPLES:
sage: A = HopfAlgebrasWithBasis(QQ).example(); A # needs sage.groups sage.modules An example of Hopf algebra with basis: the group algebra of the Dihedral group of order 6 as a permutation group over Rational Field sage: (a, b) = A._group.gens() # needs sage.groups sage.modules sage: A.counit_on_basis(a) # needs sage.groups sage.modules 1
>>> from sage.all import * >>> A = HopfAlgebrasWithBasis(QQ).example(); A # needs sage.groups sage.modules An example of Hopf algebra with basis: the group algebra of the Dihedral group of order 6 as a permutation group over Rational Field >>> (a, b) = A._group.gens() # needs sage.groups sage.modules >>> A.counit_on_basis(a) # needs sage.groups sage.modules 1
- class Super(base_category)[source]¶
Bases:
SuperModulesCategory
- extra_super_categories()[source]¶
EXAMPLES:
sage: C = Coalgebras(ZZ).WithBasis().Super() sage: sorted(C.super_categories(), key=str) # indirect doctest [Category of graded coalgebras with basis over Integer Ring, Category of super coalgebras over Integer Ring, Category of super modules with basis over Integer Ring]
>>> from sage.all import * >>> C = Coalgebras(ZZ).WithBasis().Super() >>> sorted(C.super_categories(), key=str) # indirect doctest [Category of graded coalgebras with basis over Integer Ring, Category of super coalgebras over Integer Ring, Category of super modules with basis over Integer Ring]