Lattice posets#
- class sage.categories.lattice_posets.LatticePosets[source]#
Bases:
Category
The category of lattices, i.e. partially ordered sets in which any two elements have a unique supremum (the elements’ least upper bound; called their join) and a unique infimum (greatest lower bound; called their meet).
EXAMPLES:
sage: LatticePosets() Category of lattice posets sage: LatticePosets().super_categories() [Category of posets] sage: LatticePosets().example() NotImplemented
>>> from sage.all import * >>> LatticePosets() Category of lattice posets >>> LatticePosets().super_categories() [Category of posets] >>> LatticePosets().example() NotImplemented
See also
- Finite[source]#
alias of
FiniteLatticePosets
- class ParentMethods[source]#
Bases:
object
- join(x, y)[source]#
Returns the join of \(x\) and \(y\) in this lattice
INPUT:
x
,y
– elements ofself
EXAMPLES:
sage: D = LatticePoset((divisors(60), attrcall("divides"))) # needs sage.graphs sage.modules sage: D.join( D(6), D(10) ) # needs sage.graphs sage.modules 30
>>> from sage.all import * >>> D = LatticePoset((divisors(Integer(60)), attrcall("divides"))) # needs sage.graphs sage.modules >>> D.join( D(Integer(6)), D(Integer(10)) ) # needs sage.graphs sage.modules 30
- meet(x, y)[source]#
Returns the meet of \(x\) and \(y\) in this lattice
INPUT:
x
,y
– elements ofself
EXAMPLES:
sage: D = LatticePoset((divisors(30), attrcall("divides"))) # needs sage.graphs sage.modules sage: D.meet( D(6), D(15) ) # needs sage.graphs sage.modules 3
>>> from sage.all import * >>> D = LatticePoset((divisors(Integer(30)), attrcall("divides"))) # needs sage.graphs sage.modules >>> D.meet( D(Integer(6)), D(Integer(15)) ) # needs sage.graphs sage.modules 3
- super_categories()[source]#
Returns a list of the (immediate) super categories of
self
, as perCategory.super_categories()
.EXAMPLES:
sage: LatticePosets().super_categories() [Category of posets]
>>> from sage.all import * >>> LatticePosets().super_categories() [Category of posets]