Super algebras with basis#
- class sage.categories.super_algebras_with_basis.SuperAlgebrasWithBasis(base_category)[source]#
Bases:
SuperModulesCategory
The category of super algebras with a distinguished basis
EXAMPLES:
sage: C = Algebras(ZZ).WithBasis().Super(); C Category of super algebras with basis over Integer Ring
>>> from sage.all import * >>> C = Algebras(ZZ).WithBasis().Super(); C Category of super algebras with basis over Integer Ring
- class ElementMethods[source]#
Bases:
object
- supercommutator(x)[source]#
Return the supercommutator of
self
andx
.Let \(A\) be a superalgebra. The supercommutator of homogeneous elements \(x, y \in A\) is defined by
\[[x, y\} = x y - (-1)^{|x| |y|} y x\]and extended to all elements by linearity.
EXAMPLES:
sage: # needs sage.modules sage: Q = QuadraticForm(ZZ, 3, [1,2,3,4,5,6]) sage: Cl.<x,y,z> = CliffordAlgebra(Q) sage: a = x*y - z sage: b = x - y + y*z sage: a.supercommutator(b) -5*x*y + 8*x*z - 2*y*z - 6*x + 12*y - 5*z sage: a.supercommutator(Cl.one()) 0 sage: Cl.one().supercommutator(a) 0 sage: Cl.zero().supercommutator(a) 0 sage: a.supercommutator(Cl.zero()) 0 sage: # needs sage.modules sage: Q = QuadraticForm(ZZ, 2, [-1,1,-3]) sage: Cl.<x,y> = CliffordAlgebra(Q) sage: [a.supercommutator(b) for a in Cl.basis() for b in Cl.basis()] [0, 0, 0, 0, 0, -2, 1, -x - 2*y, 0, 1, -6, 6*x + y, 0, x + 2*y, -6*x - y, 0] sage: [a*b-b*a for a in Cl.basis() for b in Cl.basis()] [0, 0, 0, 0, 0, 0, 2*x*y - 1, -x - 2*y, 0, -2*x*y + 1, 0, 6*x + y, 0, x + 2*y, -6*x - y, 0]
>>> from sage.all import * >>> # needs sage.modules >>> Q = QuadraticForm(ZZ, Integer(3), [Integer(1),Integer(2),Integer(3),Integer(4),Integer(5),Integer(6)]) >>> Cl = CliffordAlgebra(Q, names=('x', 'y', 'z',)); (x, y, z,) = Cl._first_ngens(3) >>> a = x*y - z >>> b = x - y + y*z >>> a.supercommutator(b) -5*x*y + 8*x*z - 2*y*z - 6*x + 12*y - 5*z >>> a.supercommutator(Cl.one()) 0 >>> Cl.one().supercommutator(a) 0 >>> Cl.zero().supercommutator(a) 0 >>> a.supercommutator(Cl.zero()) 0 >>> # needs sage.modules >>> Q = QuadraticForm(ZZ, Integer(2), [-Integer(1),Integer(1),-Integer(3)]) >>> Cl = CliffordAlgebra(Q, names=('x', 'y',)); (x, y,) = Cl._first_ngens(2) >>> [a.supercommutator(b) for a in Cl.basis() for b in Cl.basis()] [0, 0, 0, 0, 0, -2, 1, -x - 2*y, 0, 1, -6, 6*x + y, 0, x + 2*y, -6*x - y, 0] >>> [a*b-b*a for a in Cl.basis() for b in Cl.basis()] [0, 0, 0, 0, 0, 0, 2*x*y - 1, -x - 2*y, 0, -2*x*y + 1, 0, 6*x + y, 0, x + 2*y, -6*x - y, 0]
Exterior algebras inherit from Clifford algebras, so supercommutators work as well. We verify the exterior algebra is supercommutative:
sage: E.<x,y,z,w> = ExteriorAlgebra(QQ) # needs sage.modules sage: all(b1.supercommutator(b2) == 0 # needs sage.modules ....: for b1 in E.basis() for b2 in E.basis()) True
>>> from sage.all import * >>> E = ExteriorAlgebra(QQ, names=('x', 'y', 'z', 'w',)); (x, y, z, w,) = E._first_ngens(4)# needs sage.modules >>> all(b1.supercommutator(b2) == Integer(0) # needs sage.modules ... for b1 in E.basis() for b2 in E.basis()) True
- class ParentMethods[source]#
Bases:
object
- graded_algebra()[source]#
Return the associated graded module to
self
.See
AssociatedGradedAlgebra
for the definition and the properties of this.See also
graded_algebra()
EXAMPLES:
sage: W.<x,y> = algebras.DifferentialWeyl(QQ) # needs sage.modules sage: W.graded_algebra() # needs sage.combinat sage.modules Graded Algebra of Differential Weyl algebra of polynomials in x, y over Rational Field
>>> from sage.all import * >>> W = algebras.DifferentialWeyl(QQ, names=('x', 'y',)); (x, y,) = W._first_ngens(2)# needs sage.modules >>> W.graded_algebra() # needs sage.combinat sage.modules Graded Algebra of Differential Weyl algebra of polynomials in x, y over Rational Field
- class SignedTensorProducts(category, *args)[source]#
Bases:
SignedTensorProductsCategory
The category of super algebras with basis constructed by tensor product of super algebras with basis.
- extra_super_categories()[source]#
EXAMPLES:
sage: Algebras(QQ).Super().SignedTensorProducts().extra_super_categories() [Category of super algebras over Rational Field] sage: Algebras(QQ).Super().SignedTensorProducts().super_categories() [Category of signed tensor products of graded algebras over Rational Field, Category of super algebras over Rational Field]
>>> from sage.all import * >>> Algebras(QQ).Super().SignedTensorProducts().extra_super_categories() [Category of super algebras over Rational Field] >>> Algebras(QQ).Super().SignedTensorProducts().super_categories() [Category of signed tensor products of graded algebras over Rational Field, Category of super algebras over Rational Field]
Meaning: a signed tensor product of super algebras is a super algebra
- extra_super_categories()[source]#
EXAMPLES:
sage: C = Algebras(ZZ).WithBasis().Super() sage: sorted(C.super_categories(), key=str) # indirect doctest [Category of graded algebras with basis over Integer Ring, Category of super algebras over Integer Ring, Category of super modules with basis over Integer Ring]
>>> from sage.all import * >>> C = Algebras(ZZ).WithBasis().Super() >>> sorted(C.super_categories(), key=str) # indirect doctest [Category of graded algebras with basis over Integer Ring, Category of super algebras over Integer Ring, Category of super modules with basis over Integer Ring]