Super algebras with basis#

class sage.categories.super_algebras_with_basis.SuperAlgebrasWithBasis(base_category)#

Bases: SuperModulesCategory

The category of super algebras with a distinguished basis

EXAMPLES:

sage: C = Algebras(ZZ).WithBasis().Super(); C
Category of super algebras with basis over Integer Ring
class ElementMethods#

Bases: object

supercommutator(x)#

Return the supercommutator of self and x.

Let \(A\) be a superalgebra. The supercommutator of homogeneous elements \(x, y \in A\) is defined by

\[[x, y\} = x y - (-1)^{|x| |y|} y x\]

and extended to all elements by linearity.

EXAMPLES:

sage: Q = QuadraticForm(ZZ, 3, [1,2,3,4,5,6])                           # optional - sage.modules
sage: Cl.<x,y,z> = CliffordAlgebra(Q)                                   # optional - sage.combinat sage.modules
sage: a = x*y - z                                                       # optional - sage.combinat sage.modules
sage: b = x - y + y*z                                                   # optional - sage.combinat sage.modules
sage: a.supercommutator(b)                                              # optional - sage.combinat sage.modules
-5*x*y + 8*x*z - 2*y*z - 6*x + 12*y - 5*z
sage: a.supercommutator(Cl.one())                                       # optional - sage.combinat sage.modules
0
sage: Cl.one().supercommutator(a)                                       # optional - sage.combinat sage.modules
0
sage: Cl.zero().supercommutator(a)                                      # optional - sage.combinat sage.modules
0
sage: a.supercommutator(Cl.zero())                                      # optional - sage.combinat sage.modules
0

sage: Q = QuadraticForm(ZZ, 2, [-1,1,-3])                               # optional - sage.modules
sage: Cl.<x,y> = CliffordAlgebra(Q)                                     # optional - sage.combinat sage.modules
sage: [a.supercommutator(b) for a in Cl.basis() for b in Cl.basis()]    # optional - sage.combinat sage.modules
[0, 0, 0, 0, 0, -2, 1, -x - 2*y, 0, 1,
 -6, 6*x + y, 0, x + 2*y, -6*x - y, 0]
sage: [a*b-b*a for a in Cl.basis() for b in Cl.basis()]                 # optional - sage.combinat sage.modules
[0, 0, 0, 0, 0, 0, 2*x*y - 1, -x - 2*y, 0,
 -2*x*y + 1, 0, 6*x + y, 0, x + 2*y, -6*x - y, 0]

Exterior algebras inherit from Clifford algebras, so supercommutators work as well. We verify the exterior algebra is supercommutative:

sage: E.<x,y,z,w> = ExteriorAlgebra(QQ)                                 # optional - sage.combinat sage.modules
sage: all(b1.supercommutator(b2) == 0                                   # optional - sage.combinat sage.modules
....:     for b1 in E.basis() for b2 in E.basis())
True
class ParentMethods#

Bases: object

graded_algebra()#

Return the associated graded module to self.

See AssociatedGradedAlgebra for the definition and the properties of this.

See also

graded_algebra()

EXAMPLES:

sage: W.<x,y> = algebras.DifferentialWeyl(QQ)                           # optional - sage.combinat sage.modules
sage: W.graded_algebra()                                                # optional - sage.combinat sage.modules
Graded Algebra of Differential Weyl algebra of
 polynomials in x, y over Rational Field
class SignedTensorProducts(category, *args)#

Bases: SignedTensorProductsCategory

The category of super algebras with basis constructed by tensor product of super algebras with basis.

extra_super_categories()#

EXAMPLES:

sage: Algebras(QQ).Super().SignedTensorProducts().extra_super_categories()
[Category of super algebras over Rational Field]
sage: Algebras(QQ).Super().SignedTensorProducts().super_categories()
[Category of signed tensor products of graded algebras over Rational Field,
 Category of super algebras over Rational Field]

Meaning: a signed tensor product of super algebras is a super algebra

extra_super_categories()#

EXAMPLES:

sage: C = Algebras(ZZ).WithBasis().Super()
sage: sorted(C.super_categories(), key=str) # indirect doctest
[Category of graded algebras with basis over Integer Ring,
 Category of super algebras over Integer Ring,
 Category of super modules with basis over Integer Ring]