Finitely Generated Lambda bracket Algebras

AUTHORS:

  • Reimundo Heluani (2020-08-21): Initial implementation.

class sage.categories.finitely_generated_lambda_bracket_algebras.FinitelyGeneratedLambdaBracketAlgebras(base_category)

Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

The category of finitely generated lambda bracket algebras.

EXAMPLES:

sage: from sage.categories.lambda_bracket_algebras import LambdaBracketAlgebras
sage: LambdaBracketAlgebras(QQbar).FinitelyGenerated()
Category of finitely generated lambda bracket algebras over Algebraic Field
class Graded(base_category)

Bases: sage.categories.graded_modules.GradedModulesCategory

The category of H-graded finitely generated Lie conformal algebras.

EXAMPLES:

sage: LieConformalAlgebras(QQbar).FinitelyGenerated().Graded()
Category of H-graded finitely generated lie conformal algebras over Algebraic Field
class ParentMethods

Bases: object

gen(i)

The i-th generator of this Lie conformal algebra.

EXAMPLES:

sage: V = lie_conformal_algebras.Affine(QQ, 'A1')
sage: V.gens()
(B[alpha[1]], B[alphacheck[1]], B[-alpha[1]], B['K'])
sage: V.gen(0)
B[alpha[1]]
sage: V.1
B[alphacheck[1]]
ngens()

The number of generators of this Lie conformal algebra.

EXAMPLES:

sage: Vir = lie_conformal_algebras.Virasoro(QQ)
sage: Vir.ngens()
2

sage: V = lie_conformal_algebras.Affine(QQ, 'A2')
sage: V.ngens()
9
some_elements()

Some elements of this Lie conformal algebra.

This method returns a list with elements containing at least the generators.

EXAMPLES:

sage: V = lie_conformal_algebras.Affine(QQ, 'A1', names=('e', 'h', 'f'))
sage: V.some_elements()
[e, h, f, K, ...]
sage: all(v.parent() is V for v in V.some_elements())
True