Hecke modules#

class sage.categories.hecke_modules.HeckeModules(R)#

Bases: Category_module

The category of Hecke modules.

A Hecke module is a module \(M\) over the emph{anemic} Hecke algebra, i.e., the Hecke algebra generated by Hecke operators \(T_n\) with \(n\) coprime to the level of \(M\). (Every Hecke module defines a level function, which is a positive integer.) The reason we require that \(M\) only be a module over the anemic Hecke algebra is that many natural maps, e.g., degeneracy maps, Atkin-Lehner operators, etc., are \(\Bold{T}\)-module homomorphisms; but they are homomorphisms over the anemic Hecke algebra.


We create the category of Hecke modules over \(\QQ\):

sage: C = HeckeModules(RationalField()); C
Category of Hecke modules over Rational Field

TODO: check that this is what we want:

sage: C.super_categories()
[Category of vector spaces with basis over Rational Field]

# [Category of vector spaces over Rational Field]

Note that the base ring can be an arbitrary commutative ring:

sage: HeckeModules(IntegerRing())
Category of Hecke modules over Integer Ring
sage: HeckeModules(FiniteField(5))
Category of Hecke modules over Finite Field of size 5

The base ring doesn’t have to be a principal ideal domain:

sage: HeckeModules(PolynomialRing(IntegerRing(), 'x'))
Category of Hecke modules over Univariate Polynomial Ring in x over Integer Ring
class Homsets(category, *args)#

Bases: HomsetsCategory

class ParentMethods#

Bases: object

class ParentMethods#

Bases: object



sage: HeckeModules(QQ).super_categories()
[Category of vector spaces with basis over Rational Field]