Ring ideals#
- class sage.categories.ring_ideals.RingIdeals(R)[source]#
Bases:
Category_ideal
The category of two-sided ideals in a fixed ring.
EXAMPLES:
sage: Ideals(Integers(200)) Category of ring ideals in Ring of integers modulo 200 sage: C = Ideals(IntegerRing()); C Category of ring ideals in Integer Ring sage: I = C([8,12,18]) sage: I Principal ideal (2) of Integer Ring
>>> from sage.all import * >>> Ideals(Integers(Integer(200))) Category of ring ideals in Ring of integers modulo 200 >>> C = Ideals(IntegerRing()); C Category of ring ideals in Integer Ring >>> I = C([Integer(8),Integer(12),Integer(18)]) >>> I Principal ideal (2) of Integer Ring
See also:
CommutativeRingIdeals
.Todo
If useful, implement
RingLeftIdeals
andRingRightIdeals
of whichRingIdeals
would be a subcategory.Make
RingIdeals(R)
, returnCommutativeRingIdeals(R)
whenR
is commutative.
- super_categories()[source]#
EXAMPLES:
sage: RingIdeals(ZZ).super_categories() [Category of modules over Integer Ring] sage: RingIdeals(QQ).super_categories() [Category of vector spaces over Rational Field]
>>> from sage.all import * >>> RingIdeals(ZZ).super_categories() [Category of modules over Integer Ring] >>> RingIdeals(QQ).super_categories() [Category of vector spaces over Rational Field]