Supercommutative Algebras¶
- class sage.categories.supercommutative_algebras.SupercommutativeAlgebras(base_category)[source]¶
Bases:
CategoryWithAxiom_over_base_ring
The category of supercommutative algebras.
An \(R\)-supercommutative algebra is an \(R\)-super algebra \(A = A_0 \oplus A_1\) endowed with an \(R\)-super algebra structure satisfying:
\[x_0 x'_0 = x'_0 x_0, \qquad x_1 x'_1 = -x'_1 x_1, \qquad x_0 x_1 = x_1 x_0,\]for all \(x_0, x'_0 \in A_0\) and \(x_1, x'_1 \in A_1\).
EXAMPLES:
sage: Algebras(ZZ).Supercommutative() Category of supercommutative algebras over Integer Ring
>>> from sage.all import * >>> Algebras(ZZ).Supercommutative() Category of supercommutative algebras over Integer Ring
- class SignedTensorProducts(category, *args)[source]¶
Bases:
SignedTensorProductsCategory
- extra_super_categories()[source]¶
Return the extra super categories of
self
.A signed tensor product of supercommutative algebras is a supercommutative algebra.
EXAMPLES:
sage: C = Algebras(ZZ).Supercommutative().SignedTensorProducts() sage: C.extra_super_categories() [Category of supercommutative algebras over Integer Ring]
>>> from sage.all import * >>> C = Algebras(ZZ).Supercommutative().SignedTensorProducts() >>> C.extra_super_categories() [Category of supercommutative algebras over Integer Ring]