Finitely Generated Lie Conformal Algebras#
AUTHORS:
Reimundo Heluani (2019-10-05): Initial implementation.
- class sage.categories.finitely_generated_lie_conformal_algebras.FinitelyGeneratedLieConformalAlgebras(base_category)#
Bases:
CategoryWithAxiom_over_base_ring
The category of finitely generated Lie conformal algebras.
EXAMPLES:
sage: LieConformalAlgebras(QQbar).FinitelyGenerated() # optional - sage.rings.number_field Category of finitely generated lie conformal algebras over Algebraic Field
- class Graded(base_category)#
Bases:
GradedModulesCategory
The category of H-graded finitely generated Lie conformal algebras.
EXAMPLES:
sage: LieConformalAlgebras(QQbar).FinitelyGenerated().Graded() # optional - sage.rings.number_field Category of H-graded finitely generated lie conformal algebras over Algebraic Field
- class ParentMethods#
Bases:
object
- some_elements()#
Some elements of this Lie conformal algebra.
Returns a list with elements containing at least the generators.
EXAMPLES:
sage: V = lie_conformal_algebras.Affine(QQ, 'A1', # optional - sage.combinat sage.modules ....: names=('e', 'h', 'f')) sage: V.some_elements() # optional - sage.combinat sage.modules [e, h, f, K, ...] sage: all(v.parent() is V for v in V.some_elements()) # optional - sage.combinat sage.modules True
- class Super(base_category)#
Bases:
SuperModulesCategory
The category of super finitely generated Lie conformal algebras.
EXAMPLES:
sage: LieConformalAlgebras(AA).FinitelyGenerated().Super() # optional - sage.rings.number_field Category of super finitely generated lie conformal algebras over Algebraic Real Field
- class Graded(base_category)#
Bases:
GradedModulesCategory
The category of H-graded super finitely generated Lie conformal algebras.
EXAMPLES:
sage: LieConformalAlgebras(QQbar).FinitelyGenerated().Super().Graded() # optional - sage.rings.number_field Category of H-graded super finitely generated lie conformal algebras over Algebraic Field