Examples of semirings¶
- sage.categories.examples.semirings.Example[source]¶
alias of
TernaryLogic
- class sage.categories.examples.semirings.Ternary(parent, n)[source]¶
Bases:
Element
Elements of the ternary-logic ring.
The semantic is as follows:
0 – the integer 0
1 – the integer 1
2 – some integer greater than 1
An alternative semantic is:
0 – an empty set
1 – a connected set
2 – a disconnected set
The same semantic works for graphs instead of sets.
- class sage.categories.examples.semirings.TernaryLogic[source]¶
Bases:
UniqueRepresentation
,Parent
An example of a semiring.
This class illustrates a minimal implementation of a semiring.
EXAMPLES:
sage: S = Semirings().example(); S An example of a semiring: the ternary-logic semiring
>>> from sage.all import * >>> S = Semirings().example(); S An example of a semiring: the ternary-logic semiring
This is the semiring that contains 3 objects:
sage: S.some_elements() [0, 1, many]
>>> from sage.all import * >>> S.some_elements() [0, 1, many]
The product rule is as expected:
sage: S(1) * S(1) 1 sage: S(1) + S(1) many
>>> from sage.all import * >>> S(Integer(1)) * S(Integer(1)) 1 >>> S(Integer(1)) + S(Integer(1)) many
- an_element()[source]¶
Return an element of the semiring.
EXAMPLES:
sage: Semirings().example().an_element() many
>>> from sage.all import * >>> Semirings().example().an_element() many
- one()[source]¶
Return the unit of
self
.EXAMPLES:
sage: S = Semirings().example() sage: S.one() 1
>>> from sage.all import * >>> S = Semirings().example() >>> S.one() 1
- product(x, y)[source]¶
Return the product of
x
andy
in the semiring as perSemirings.ParentMethods.product()
.EXAMPLES:
sage: S = Semirings().example() sage: S(1) * S(2) many
>>> from sage.all import * >>> S = Semirings().example() >>> S(Integer(1)) * S(Integer(2)) many