Simplicial Complexes¶
- class sage.categories.simplicial_complexes.SimplicialComplexes[source]¶
Bases:
Category_singleton
The category of abstract simplicial complexes.
An abstract simplicial complex \(A\) is a collection of sets \(X\) such that:
\(\emptyset \in A\),
if \(X \subset Y \in A\), then \(X \in A\).
Todo
Implement the category of simplicial complexes considered as
CW complexes
and rename this to the category ofAbstractSimplicialComplexes
with appropriate functors.EXAMPLES:
sage: from sage.categories.simplicial_complexes import SimplicialComplexes sage: C = SimplicialComplexes(); C Category of simplicial complexes
>>> from sage.all import * >>> from sage.categories.simplicial_complexes import SimplicialComplexes >>> C = SimplicialComplexes(); C Category of simplicial complexes
- class Connected(base_category)[source]¶
Bases:
CategoryWithAxiom
The category of connected simplicial complexes.
EXAMPLES:
sage: from sage.categories.simplicial_complexes import SimplicialComplexes sage: C = SimplicialComplexes().Connected() sage: TestSuite(C).run()
>>> from sage.all import * >>> from sage.categories.simplicial_complexes import SimplicialComplexes >>> C = SimplicialComplexes().Connected() >>> TestSuite(C).run()
- class Finite(base_category)[source]¶
Bases:
CategoryWithAxiom
Category of finite simplicial complexes.
- class ParentMethods[source]¶
Bases:
object
- dimension()[source]¶
Return the dimension of
self
.EXAMPLES:
sage: S = SimplicialComplex([[1,3,4], [1,2],[2,5],[4,5]]) # needs sage.graphs sage: S.dimension() # needs sage.graphs 2
>>> from sage.all import * >>> S = SimplicialComplex([[Integer(1),Integer(3),Integer(4)], [Integer(1),Integer(2)],[Integer(2),Integer(5)],[Integer(4),Integer(5)]]) # needs sage.graphs >>> S.dimension() # needs sage.graphs 2
- class ParentMethods[source]¶
Bases:
object
- faces()[source]¶
Return the faces of
self
.EXAMPLES:
sage: S = SimplicialComplex([[1,3,4], [1,2],[2,5],[4,5]]) # needs sage.graphs sage: S.faces() # needs sage.graphs {-1: {()}, 0: {(1,), (2,), (3,), (4,), (5,)}, 1: {(1, 2), (1, 3), (1, 4), (2, 5), (3, 4), (4, 5)}, 2: {(1, 3, 4)}}
>>> from sage.all import * >>> S = SimplicialComplex([[Integer(1),Integer(3),Integer(4)], [Integer(1),Integer(2)],[Integer(2),Integer(5)],[Integer(4),Integer(5)]]) # needs sage.graphs >>> S.faces() # needs sage.graphs {-1: {()}, 0: {(1,), (2,), (3,), (4,), (5,)}, 1: {(1, 2), (1, 3), (1, 4), (2, 5), (3, 4), (4, 5)}, 2: {(1, 3, 4)}}
- facets()[source]¶
Return the facets of
self
.EXAMPLES:
sage: S = SimplicialComplex([[1,3,4], [1,2],[2,5],[4,5]]) # needs sage.graphs sage: sorted(S.facets()) # needs sage.graphs [(1, 2), (1, 3, 4), (2, 5), (4, 5)]
>>> from sage.all import * >>> S = SimplicialComplex([[Integer(1),Integer(3),Integer(4)], [Integer(1),Integer(2)],[Integer(2),Integer(5)],[Integer(4),Integer(5)]]) # needs sage.graphs >>> sorted(S.facets()) # needs sage.graphs [(1, 2), (1, 3, 4), (2, 5), (4, 5)]
- class SubcategoryMethods[source]¶
Bases:
object
- Connected()[source]¶
Return the full subcategory of the connected objects of
self
.EXAMPLES:
sage: from sage.categories.simplicial_complexes import SimplicialComplexes sage: SimplicialComplexes().Connected() Category of connected simplicial complexes
>>> from sage.all import * >>> from sage.categories.simplicial_complexes import SimplicialComplexes >>> SimplicialComplexes().Connected() Category of connected simplicial complexes
- super_categories()[source]¶
Return the super categories of
self
.EXAMPLES:
sage: from sage.categories.simplicial_complexes import SimplicialComplexes sage: SimplicialComplexes().super_categories() [Category of sets]
>>> from sage.all import * >>> from sage.categories.simplicial_complexes import SimplicialComplexes >>> SimplicialComplexes().super_categories() [Category of sets]