Specific category classes¶
This is placed in a separate file from categories.py to avoid circular imports (as morphisms must be very low in the hierarchy with the new coercion model).
- class sage.categories.category_types.Category_ideal(ambient, name=None)[source]¶
Bases:
Category_in_ambient
- classmethod an_instance()[source]¶
Return an instance of this class.
EXAMPLES:
sage: AlgebraIdeals.an_instance() Category of algebra ideals in Univariate Polynomial Ring in x over Rational Field
>>> from sage.all import * >>> AlgebraIdeals.an_instance() Category of algebra ideals in Univariate Polynomial Ring in x over Rational Field
- class sage.categories.category_types.Category_in_ambient(ambient, name=None)[source]¶
Bases:
Category
Initialize
self
.The parameter
name
is ignored.EXAMPLES:
sage: C = Ideals(IntegerRing()) sage: TestSuite(C).run()
>>> from sage.all import * >>> C = Ideals(IntegerRing()) >>> TestSuite(C).run()
- class sage.categories.category_types.Category_over_base(base, name=None)[source]¶
Bases:
CategoryWithParameters
A base class for categories over some base object.
INPUT:
base
– a category \(C\) or an object of such a category
Assumption: the classes for the parents, elements, morphisms, of
self
should only depend on \(C\). See Issue #11935 for details.EXAMPLES:
sage: Algebras(GF(2)).element_class is Algebras(GF(3)).element_class True sage: C = GF(2).category() sage: Algebras(GF(2)).parent_class is Algebras(C).parent_class True sage: C = ZZ.category() sage: Algebras(ZZ).element_class is Algebras(C).element_class True
>>> from sage.all import * >>> Algebras(GF(Integer(2))).element_class is Algebras(GF(Integer(3))).element_class True >>> C = GF(Integer(2)).category() >>> Algebras(GF(Integer(2))).parent_class is Algebras(C).parent_class True >>> C = ZZ.category() >>> Algebras(ZZ).element_class is Algebras(C).element_class True
- class sage.categories.category_types.Category_over_base_ring(base, name=None)[source]¶
Bases:
Category_over_base
Initialize
self
.EXAMPLES:
sage: C = Algebras(GF(2)); C Category of algebras over Finite Field of size 2 sage: TestSuite(C).run()
>>> from sage.all import * >>> C = Algebras(GF(Integer(2))); C Category of algebras over Finite Field of size 2 >>> TestSuite(C).run()
- class sage.categories.category_types.Elements(object)[source]¶
Bases:
Category
The category of all elements of a given parent.
EXAMPLES:
sage: a = IntegerRing()(5) sage: C = a.category(); C Category of elements of Integer Ring sage: a in C True sage: 2/3 in C False sage: loads(C.dumps()) == C True
>>> from sage.all import * >>> a = IntegerRing()(Integer(5)) >>> C = a.category(); C Category of elements of Integer Ring >>> a in C True >>> Integer(2)/Integer(3) in C False >>> loads(C.dumps()) == C True
- classmethod an_instance()[source]¶
Return an instance of this class.
EXAMPLES:
sage: Elements.an_instance() Category of elements of Rational Field
>>> from sage.all import * >>> Elements.an_instance() Category of elements of Rational Field