Principal ideal domains

class sage.categories.principal_ideal_domains.PrincipalIdealDomains(s=None)

Bases: sage.categories.category_singleton.Category_singleton

The category of (constructive) principal ideal domains

By constructive, we mean that a single generator can be constructively found for any ideal given by a finite set of generators. Note that this constructive definition only implies that finitely generated ideals are principal. It is not clear what we would mean by an infinitely generated ideal.

EXAMPLES:

sage: PrincipalIdealDomains()
Category of principal ideal domains
sage: PrincipalIdealDomains().super_categories()
[Category of unique factorization domains]

See also Wikipedia article Principal_ideal_domain

class ElementMethods
class ParentMethods
additional_structure()

Return None.

Indeed, the category of principal ideal domains defines no additional structure: a ring morphism between two principal ideal domains is a principal ideal domain morphism.

EXAMPLES:

sage: PrincipalIdealDomains().additional_structure()
super_categories()

EXAMPLES:

sage: PrincipalIdealDomains().super_categories()
[Category of unique factorization domains]