Graded modules#
- class sage.categories.graded_modules.GradedModules(base_category)[source]#
Bases:
GradedModulesCategory
The category of graded modules.
We consider every graded module \(M = \bigoplus_i M_i\) as a filtered module under the (natural) filtration given by
\[F_i = \bigoplus_{j < i} M_j.\]EXAMPLES:
sage: GradedModules(ZZ) Category of graded modules over Integer Ring sage: GradedModules(ZZ).super_categories() [Category of filtered modules over Integer Ring]
>>> from sage.all import * >>> GradedModules(ZZ) Category of graded modules over Integer Ring >>> GradedModules(ZZ).super_categories() [Category of filtered modules over Integer Ring]
The category of graded modules defines the graded structure which shall be preserved by morphisms:
sage: Modules(ZZ).Graded().additional_structure() Category of graded modules over Integer Ring
>>> from sage.all import * >>> Modules(ZZ).Graded().additional_structure() Category of graded modules over Integer Ring
- class sage.categories.graded_modules.GradedModulesCategory(base_category)[source]#
Bases:
RegressiveCovariantConstructionCategory
,Category_over_base_ring
EXAMPLES:
sage: C = GradedAlgebras(QQ) sage: C Category of graded algebras over Rational Field sage: C.base_category() Category of algebras over Rational Field sage: sorted(C.super_categories(), key=str) [Category of filtered algebras over Rational Field, Category of graded vector spaces over Rational Field] sage: AlgebrasWithBasis(QQ).Graded().base_ring() Rational Field sage: GradedHopfAlgebrasWithBasis(QQ).base_ring() Rational Field
>>> from sage.all import * >>> C = GradedAlgebras(QQ) >>> C Category of graded algebras over Rational Field >>> C.base_category() Category of algebras over Rational Field >>> sorted(C.super_categories(), key=str) [Category of filtered algebras over Rational Field, Category of graded vector spaces over Rational Field] >>> AlgebrasWithBasis(QQ).Graded().base_ring() Rational Field >>> GradedHopfAlgebrasWithBasis(QQ).base_ring() Rational Field
- classmethod default_super_categories(category, *args)[source]#
Return the default super categories of
category.Graded()
.Mathematical meaning: every graded object (module, algebra, etc.) is a filtered object with the (implicit) filtration defined by \(F_i = \bigoplus_{j \leq i} G_j\).
INPUT:
cls
– the classGradedModulesCategory
category
– a category
OUTPUT: a (join) category
In practice, this returns
category.Filtered()
, joined together with the result of the methodRegressiveCovariantConstructionCategory.default_super_categories()
(that is the join ofcategory.Filtered()
andcat
for eachcat
in the super categories ofcategory
).EXAMPLES:
Consider
category=Algebras()
, which hascat=Modules()
as super category. Then, a grading of an algebra \(G\) is also a filtration of \(G\):sage: Algebras(QQ).Graded().super_categories() [Category of filtered algebras over Rational Field, Category of graded vector spaces over Rational Field]
>>> from sage.all import * >>> Algebras(QQ).Graded().super_categories() [Category of filtered algebras over Rational Field, Category of graded vector spaces over Rational Field]
This resulted from the following call:
sage: sage.categories.graded_modules.GradedModulesCategory.default_super_categories(Algebras(QQ)) Join of Category of filtered algebras over Rational Field and Category of graded vector spaces over Rational Field
>>> from sage.all import * >>> sage.categories.graded_modules.GradedModulesCategory.default_super_categories(Algebras(QQ)) Join of Category of filtered algebras over Rational Field and Category of graded vector spaces over Rational Field