# Finite dimensional algebras with basis#

Todo

Quotients of polynomial rings.

Quotients in general.

Matrix rings.

REFERENCES:

class sage.categories.finite_dimensional_algebras_with_basis.FiniteDimensionalAlgebrasWithBasis(base_category)#

The category of finite dimensional algebras with a distinguished basis.

EXAMPLES:

sage: C = FiniteDimensionalAlgebrasWithBasis(QQ); C
Category of finite dimensional algebras with basis over Rational Field
sage: C.super_categories()
[Category of algebras with basis over Rational Field,
Category of finite dimensional magmatic algebras with basis over Rational Field]
sage: C.example()                                                               # needs sage.modules
An example of a finite dimensional algebra with basis:
the path algebra of the Kronecker quiver
(containing the arrows a:x->y and b:x->y) over Rational Field

class Cellular(base_category)#

Cellular algebras.

Let $$R$$ be a commutative ring. A $$R$$-algebra $$A$$ is a cellular algebra if it has a cell datum, which is a tuple $$(\Lambda, i, M, C)$$, where $$\Lambda$$ is finite poset with order $$\ge$$, if $$\mu \in \Lambda$$ then $$T(\mu)$$ is a finite set and

$C \colon \coprod_{\mu\in\Lambda}T(\mu) \times T(\mu) \longrightarrow A; (\mu,s,t) \mapsto c^\mu_{st} \text{ is an injective map}$

such that the following holds:

• The set $$\{c^\mu_{st}\mid \mu\in\Lambda, s,t\in T(\mu)\}$$ is a basis of $$A$$.

• If $$a \in A$$ and $$\mu\in\Lambda, s,t \in T(\mu)$$ then:

$a c^\mu_{st} = \sum_{u\in T(\mu)} r_a(s,u) c^\mu_{ut} \pmod{A^{>\mu}},$

where $$A^{>\mu}$$ is spanned by

$\{ c^\nu_{ab} \mid \nu > \mu \text{ and } a,b \in T(\nu) \}.$

Moreover, the scalar $$r_a(s,u)$$ depends only on $$a$$, $$s$$ and $$u$$ and, in particular, is independent of $$t$$.

• The map $$\iota \colon A \longrightarrow A; c^\mu_{st} \mapsto c^\mu_{ts}$$ is an algebra anti-isomorphism.

A cellular basis for $$A$$ is any basis of the form $$\{c^\mu_{st} \mid \mu \in \Lambda, s,t \in T(\mu)\}$$.

Note that in particular, the scalars $$r_a(u, s)$$ in the second condition do not depend on $$t$$.

REFERENCES:

class ElementMethods#

Bases: object

cellular_involution()#

Return the cellular involution on self.

EXAMPLES:

sage: # needs sage.groups sage.modules
sage: S = SymmetricGroupAlgebra(QQ, 4)
sage: elt = S([3,1,2,4])
sage: ci = elt.cellular_involution(); ci
7/48*[1, 3, 2, 4] + 49/48*[2, 3, 1, 4]
- 1/48*[3, 1, 2, 4] - 7/48*[3, 2, 1, 4]
sage: ci.cellular_involution()
[3, 1, 2, 4]

class ParentMethods#

Bases: object

cell_module(mu, **kwds)#

Return the cell module indexed by mu.

EXAMPLES:

sage: S = SymmetricGroupAlgebra(QQ, 3)                              # needs sage.groups sage.modules
sage: S.cell_module(Partition([2,1]))                               # needs sage.combinat sage.groups sage.modules
Cell module indexed by [2, 1] of Cellular basis of
Symmetric group algebra of order 3 over Rational Field

cell_module_indices(mu)#

Return the indices of the cell module of self indexed by mu .

This is the finite set $$M(\lambda)$$.

EXAMPLES:

sage: S = SymmetricGroupAlgebra(QQ, 3)                              # needs sage.groups sage.modules
sage: S.cell_module_indices([2,1])                                  # needs sage.groups sage.modules
Standard tableaux of shape [2, 1]

cell_poset()#

Return the cell poset of self.

EXAMPLES:

sage: S = SymmetricGroupAlgebra(QQ, 4)                              # needs sage.groups sage.modules
sage: S.cell_poset()                                                # needs sage.groups sage.modules
Finite poset containing 5 elements

cells()#

Return the cells of self.

EXAMPLES:

sage: S = SymmetricGroupAlgebra(QQ, 3)                              # needs sage.groups sage.modules
sage: dict(S.cells())                                               # needs sage.groups sage.modules
{[1, 1, 1]: Standard tableaux of shape [1, 1, 1],
[2, 1]: Standard tableaux of shape [2, 1],
: Standard tableaux of shape }

cellular_basis()#

Return the cellular basis of self.

EXAMPLES:

sage: S = SymmetricGroupAlgebra(QQ, 3)                              # needs sage.groups sage.modules
sage: S.cellular_basis()                                            # needs sage.groups sage.modules
Cellular basis of Symmetric group algebra of order 3
over Rational Field

cellular_involution(x)#

Return the cellular involution of x in self.

EXAMPLES:

sage: S = SymmetricGroupAlgebra(QQ, 3)                              # needs sage.groups sage.modules
sage: for b in S.basis(): b, S.cellular_involution(b)               # needs sage.groups sage.modules
([1, 2, 3], [1, 2, 3])
([1, 3, 2], 49/48*[1, 3, 2] + 7/48*[2, 3, 1]
- 7/48*[3, 1, 2] - 1/48*[3, 2, 1])
([2, 1, 3], [2, 1, 3])
([2, 3, 1], -7/48*[1, 3, 2] - 1/48*[2, 3, 1]
+ 49/48*[3, 1, 2] + 7/48*[3, 2, 1])
([3, 1, 2], 7/48*[1, 3, 2] + 49/48*[2, 3, 1]
- 1/48*[3, 1, 2] - 7/48*[3, 2, 1])
([3, 2, 1], -1/48*[1, 3, 2] - 7/48*[2, 3, 1]
+ 7/48*[3, 1, 2] + 49/48*[3, 2, 1])

simple_module_parameterization()#

Return a parameterization of the simple modules of self.

The set of simple modules are parameterized by $$\lambda \in \Lambda$$ such that the cell module bilinear form $$\Phi_{\lambda} \neq 0$$.

EXAMPLES:

sage: S = SymmetricGroupAlgebra(QQ, 4)                              # needs sage.groups sage.modules
sage: S.simple_module_parameterization()                            # needs sage.groups sage.modules
(, [3, 1], [2, 2], [2, 1, 1], [1, 1, 1, 1])

class TensorProducts(category, *args)#

The category of cellular algebras constructed by tensor product of cellular algebras.

class ParentMethods#

Bases: object

cell_module_indices(mu)#

Return the indices of the cell module of self indexed by mu .

This is the finite set $$M(\lambda)$$.

EXAMPLES:

sage: # needs sage.groups sage.modules
sage: S2 = SymmetricGroupAlgebra(QQ, 2)
sage: S3 = SymmetricGroupAlgebra(QQ, 3)
sage: T = S2.tensor(S3)
sage: T.cell_module_indices(([1,1], [2,1]))
The Cartesian product of (Standard tableaux of shape [1, 1],
Standard tableaux of shape [2, 1])

cell_poset()#

Return the cell poset of self.

EXAMPLES:

sage: # needs sage.groups sage.modules
sage: S2 = SymmetricGroupAlgebra(QQ, 2)
sage: S3 = SymmetricGroupAlgebra(QQ, 3)
sage: T = S2.tensor(S3)
sage: T.cell_poset()                                            # needs sage.combinat sage.graphs
Finite poset containing 6 elements

cellular_involution()#

Return the image of the cellular involution of the basis element indexed by i.

EXAMPLES:

sage: # needs sage.groups sage.modules
sage: S2 = SymmetricGroupAlgebra(QQ, 2)
sage: S3 = SymmetricGroupAlgebra(QQ, 3)
sage: T = S2.tensor(S3)
sage: for b in T.basis(): b, T.cellular_involution(b)
([1, 2] # [1, 2, 3], [1, 2] # [1, 2, 3])
([1, 2] # [1, 3, 2],
49/48*[1, 2] # [1, 3, 2] + 7/48*[1, 2] # [2, 3, 1]
- 7/48*[1, 2] # [3, 1, 2] - 1/48*[1, 2] # [3, 2, 1])
([1, 2] # [2, 1, 3], [1, 2] # [2, 1, 3])
([1, 2] # [2, 3, 1],
-7/48*[1, 2] # [1, 3, 2] - 1/48*[1, 2] # [2, 3, 1]
+ 49/48*[1, 2] # [3, 1, 2] + 7/48*[1, 2] # [3, 2, 1])
([1, 2] # [3, 1, 2],
7/48*[1, 2] # [1, 3, 2] + 49/48*[1, 2] # [2, 3, 1]
- 1/48*[1, 2] # [3, 1, 2] - 7/48*[1, 2] # [3, 2, 1])
([1, 2] # [3, 2, 1],
-1/48*[1, 2] # [1, 3, 2] - 7/48*[1, 2] # [2, 3, 1]
+ 7/48*[1, 2] # [3, 1, 2] + 49/48*[1, 2] # [3, 2, 1])
([2, 1] # [1, 2, 3], [2, 1] # [1, 2, 3])
([2, 1] # [1, 3, 2],
49/48*[2, 1] # [1, 3, 2] + 7/48*[2, 1] # [2, 3, 1]
- 7/48*[2, 1] # [3, 1, 2] - 1/48*[2, 1] # [3, 2, 1])
([2, 1] # [2, 1, 3], [2, 1] # [2, 1, 3])
([2, 1] # [2, 3, 1],
-7/48*[2, 1] # [1, 3, 2] - 1/48*[2, 1] # [2, 3, 1]
+ 49/48*[2, 1] # [3, 1, 2] + 7/48*[2, 1] # [3, 2, 1])
([2, 1] # [3, 1, 2],
7/48*[2, 1] # [1, 3, 2] + 49/48*[2, 1] # [2, 3, 1]
- 1/48*[2, 1] # [3, 1, 2] - 7/48*[2, 1] # [3, 2, 1])
([2, 1] # [3, 2, 1],
-1/48*[2, 1] # [1, 3, 2] - 7/48*[2, 1] # [2, 3, 1]
+ 7/48*[2, 1] # [3, 1, 2] + 49/48*[2, 1] # [3, 2, 1])

extra_super_categories()#

Tensor products of cellular algebras are cellular.

EXAMPLES:

sage: cat = Algebras(QQ).FiniteDimensional().WithBasis()
sage: cat.Cellular().TensorProducts().extra_super_categories()
[Category of finite dimensional cellular algebras with basis
over Rational Field]

class ElementMethods#

Bases: object

on_left_matrix(base_ring=None, action=<built-in function mul>, side='left')#

Return the matrix of the action of self on the algebra.

INPUT:

• base_ring – the base ring for the matrix to be constructed

• action – a bivariate function (default: operator.mul())

• side – ‘left’ or ‘right’ (default: ‘left’)

EXAMPLES:

sage: # needs sage.groups sage.modules
sage: QS3 = SymmetricGroupAlgebra(QQ, 3)
sage: a = QS3([2,1,3])
sage: a.to_matrix(side='left')
[0 0 1 0 0 0]
[0 0 0 0 1 0]
[1 0 0 0 0 0]
[0 0 0 0 0 1]
[0 1 0 0 0 0]
[0 0 0 1 0 0]
sage: a.to_matrix(side='right')
[0 0 1 0 0 0]
[0 0 0 1 0 0]
[1 0 0 0 0 0]
[0 1 0 0 0 0]
[0 0 0 0 0 1]
[0 0 0 0 1 0]
sage: a.to_matrix(base_ring=RDF, side="left")
[0.0 0.0 1.0 0.0 0.0 0.0]
[0.0 0.0 0.0 0.0 1.0 0.0]
[1.0 0.0 0.0 0.0 0.0 0.0]
[0.0 0.0 0.0 0.0 0.0 1.0]
[0.0 1.0 0.0 0.0 0.0 0.0]
[0.0 0.0 0.0 1.0 0.0 0.0]


AUTHORS: Mike Hansen, …

to_matrix(base_ring=None, action=<built-in function mul>, side='left')#

Return the matrix of the action of self on the algebra.

INPUT:

• base_ring – the base ring for the matrix to be constructed

• action – a bivariate function (default: operator.mul())

• side – ‘left’ or ‘right’ (default: ‘left’)

EXAMPLES:

sage: # needs sage.groups sage.modules
sage: QS3 = SymmetricGroupAlgebra(QQ, 3)
sage: a = QS3([2,1,3])
sage: a.to_matrix(side='left')
[0 0 1 0 0 0]
[0 0 0 0 1 0]
[1 0 0 0 0 0]
[0 0 0 0 0 1]
[0 1 0 0 0 0]
[0 0 0 1 0 0]
sage: a.to_matrix(side='right')
[0 0 1 0 0 0]
[0 0 0 1 0 0]
[1 0 0 0 0 0]
[0 1 0 0 0 0]
[0 0 0 0 0 1]
[0 0 0 0 1 0]
sage: a.to_matrix(base_ring=RDF, side="left")
[0.0 0.0 1.0 0.0 0.0 0.0]
[0.0 0.0 0.0 0.0 1.0 0.0]
[1.0 0.0 0.0 0.0 0.0 0.0]
[0.0 0.0 0.0 0.0 0.0 1.0]
[0.0 1.0 0.0 0.0 0.0 0.0]
[0.0 0.0 0.0 1.0 0.0 0.0]


AUTHORS: Mike Hansen, …

class ParentMethods#

Bases: object

cartan_invariants_matrix()#

Return the Cartan invariants matrix of the algebra.

OUTPUT: a matrix of non negative integers

Let $$A$$ be this finite dimensional algebra and $$(S_i)_{i\in I}$$ be representatives of the right simple modules of $$A$$. Note that their adjoints $$S_i^*$$ are representatives of the left simple modules.

Let $$(P^L_i)_{i\in I}$$ and $$(P^R_i)_{i\in I}$$ be respectively representatives of the corresponding indecomposable projective left and right modules of $$A$$. In particular, we assume that the indexing is consistent so that $$S_i^*=\operatorname{top} P^L_i$$ and $$S_i=\operatorname{top} P^R_i$$.

The Cartan invariant matrix $$(C_{i,j})_{i,j\in I}$$ is a matrix of non negative integers that encodes much of the representation theory of $$A$$; namely:

• $$C_{i,j}$$ counts how many times $$S_i^*\otimes S_j$$ appears as composition factor of $$A$$ seen as a bimodule over itself;

• $$C_{i,j}=\dim Hom_A(P^R_j, P^R_i)$$;

• $$C_{i,j}$$ counts how many times $$S_j$$ appears as composition factor of $$P^R_i$$;

• $$C_{i,j}=\dim Hom_A(P^L_i, P^L_j)$$;

• $$C_{i,j}$$ counts how many times $$S_i^*$$ appears as composition factor of $$P^L_j$$.

In the commutative case, the Cartan invariant matrix is diagonal. In the context of solving systems of multivariate polynomial equations of dimension zero, $$A$$ is the quotient of the polynomial ring by the ideal generated by the equations, the simple modules correspond to the roots, and the numbers $$C_{i,i}$$ give the multiplicities of those roots.

Note

For simplicity, the current implementation assumes that the index set $$I$$ is of the form $$\{0,\dots,n-1\}$$. Better indexations will be possible in the future.

ALGORITHM:

The Cartan invariant matrix of $$A$$ is computed from the dimension of the summands of its Peirce decomposition.

EXAMPLES:

For a semisimple algebra, in particular for group algebras in characteristic zero, the Cartan invariants matrix is the identity:

sage: A3 = SymmetricGroup(3).algebra(QQ)                                # needs sage.groups sage.modules
sage: A3.cartan_invariants_matrix()                                     # needs sage.groups sage.modules
[1 0 0]
[0 1 0]
[0 0 1]


For the path algebra of a quiver, the Cartan invariants matrix counts the number of paths between two vertices:

sage: A = Algebras(QQ).FiniteDimensional().WithBasis().example()
sage: A.cartan_invariants_matrix()                                      # needs sage.modules sage.rings.number_field
[1 2]
[0 1]


In the commutative case, the Cartan invariant matrix is diagonal:

sage: Z12 = Monoids().Finite().example(); Z12
An example of a finite multiplicative monoid: the integers modulo 12
sage: A = Z12.algebra(QQ)                                               # needs sage.modules
sage: A.cartan_invariants_matrix()                                      # needs sage.modules sage.rings.number_field
[1 0 0 0 0 0 0 0 0]
[0 1 0 0 0 0 0 0 0]
[0 0 2 0 0 0 0 0 0]
[0 0 0 1 0 0 0 0 0]
[0 0 0 0 2 0 0 0 0]
[0 0 0 0 0 1 0 0 0]
[0 0 0 0 0 0 1 0 0]
[0 0 0 0 0 0 0 2 0]
[0 0 0 0 0 0 0 0 1]


With the algebra of the $$0$$-Hecke monoid:

sage: # needs sage.combinat sage.groups sage.modules
sage: from sage.monoids.hecke_monoid import HeckeMonoid
sage: A = HeckeMonoid(SymmetricGroup(4)).algebra(QQ)
sage: A.cartan_invariants_matrix()                                      # needs sage.rings.number_field
[1 0 0 0 0 0 0 0]
[0 2 1 0 1 1 0 0]
[0 1 1 0 1 0 0 0]
[0 0 0 1 0 1 1 0]
[0 1 1 0 1 0 0 0]
[0 1 0 1 0 2 1 0]
[0 0 0 1 0 1 1 0]
[0 0 0 0 0 0 0 1]

center()#

Return the center of self.

EXAMPLES:

sage: # needs sage.graphs sage.modules
sage: A = Algebras(QQ).FiniteDimensional().WithBasis().example(); A
An example of a finite dimensional algebra with basis:
the path algebra of the Kronecker quiver
(containing the arrows a:x->y and b:x->y) over Rational Field
sage: center = A.center(); center
Center of An example of a finite dimensional algebra with basis:
the path algebra of the Kronecker quiver
(containing the arrows a:x->y and b:x->y) over Rational Field
sage: center in Algebras(QQ).WithBasis().FiniteDimensional().Commutative()
True
sage: center.dimension()
1
sage: center.basis()
Finite family {0: B}
sage: center.ambient() is A
True
sage: [c.lift() for c in center.basis()]
[x + y]


The center of a semisimple algebra is semisimple:

sage: A = DihedralGroup(6).algebra(QQ)                                  # needs sage.groups sage.modules
sage: A.center() in Algebras(QQ).Semisimple()                           # needs sage.groups sage.modules
True


Todo

• Pickling by construction, as A.center()?

• Lazy evaluation of _repr_

center_basis()#

Return a basis of the center of self.

OUTPUT:

• a list of elements of self.

EXAMPLES:

sage: # needs sage.graphs sage.modules
sage: A = Algebras(QQ).FiniteDimensional().WithBasis().example(); A
An example of a finite dimensional algebra with basis:
the path algebra of the Kronecker quiver
(containing the arrows a:x->y and b:x->y) over Rational Field
sage: A.center_basis()
(x + y,)

idempotent_lift(x)#

Lift an idempotent of the semisimple quotient into an idempotent of self.

Let $$A$$ be this finite dimensional algebra and $$\pi$$ be the projection $$A \rightarrow \overline{A}$$ on its semisimple quotient. Let $$\overline{x}$$ be an idempotent of $$\overline A$$, and $$x$$ any lift thereof in $$A$$. This returns an idempotent $$e$$ of $$A$$ such that $$\pi(e)=\pi(x)$$ and $$e$$ is a polynomial in $$x$$.

INPUT:

• $$x$$ – an element of $$A$$ that projects on an idempotent $$\overline x$$ of the semisimple quotient of $$A$$. Alternatively one may give as input the idempotent $$\overline{x}$$, in which case some lift thereof will be taken for $$x$$.

OUTPUT: the idempotent $$e$$ of self

ALGORITHM:

Iterate the formula $$1 - (1 - x^2)^2$$ until having an idempotent.

See [CR1962] for correctness and termination proofs.

EXAMPLES:

sage: # needs sage.graphs sage.modules
sage: A = Algebras(QQ).FiniteDimensional().WithBasis().example()
sage: S = A.semisimple_quotient()
sage: A.idempotent_lift(S.basis()['x'])
x
sage: A.idempotent_lift(A.basis()['y'])
y


Todo

is_commutative()#

Return whether self is a commutative algebra.

EXAMPLES:

sage: # needs sage.groups sage.modules
sage: S4 = SymmetricGroupAlgebra(QQ, 4)
sage: S4.is_commutative()
False
sage: S2 = SymmetricGroupAlgebra(QQ, 2)
sage: S2.is_commutative()
True

is_identity_decomposition_into_orthogonal_idempotents(l)#

Return whether l is a decomposition of the identity into orthogonal idempotents.

INPUT:

• l – a list or iterable of elements of self

EXAMPLES:

sage: # needs sage.graphs sage.modules
sage: A = FiniteDimensionalAlgebrasWithBasis(QQ).example(); A
An example of a finite dimensional algebra with basis:
the path algebra of the Kronecker quiver
(containing the arrows a:x->y and b:x->y) over Rational Field
sage: x,y,a,b = A.algebra_generators(); x,y,a,b
(x, y, a, b)
sage: A.is_identity_decomposition_into_orthogonal_idempotents([A.one()])
True
sage: A.is_identity_decomposition_into_orthogonal_idempotents([x, y])
True
sage: A.is_identity_decomposition_into_orthogonal_idempotents([x + a, y - a])
True


Here the idempotents do not sum up to $$1$$:

sage: A.is_identity_decomposition_into_orthogonal_idempotents([x])                  # needs sage.graphs sage.modules
False


Here $$1+x$$ and $$-x$$ are neither idempotent nor orthogonal:

sage: A.is_identity_decomposition_into_orthogonal_idempotents([1 + x, -x])          # needs sage.graphs sage.modules
False


With the algebra of the $$0$$-Hecke monoid:

sage: # needs sage.combinat sage.groups sage.modules
sage: from sage.monoids.hecke_monoid import HeckeMonoid
sage: A = HeckeMonoid(SymmetricGroup(4)).algebra(QQ)
sage: idempotents = A.orthogonal_idempotents_central_mod_radical()                  # needs sage.rings.number_field
sage: A.is_identity_decomposition_into_orthogonal_idempotents(idempotents)          # needs sage.rings.number_field
True


Here are some more counterexamples:

1. Some orthogonal elements summing to $$1$$ but not being idempotent:

sage: # needs sage.libs.pari sage.modules
sage: class PQAlgebra(CombinatorialFreeModule):
....:     def __init__(self, F, p):
....:         # Construct the quotient algebra F[x] / p,
....:         # where p is a univariate polynomial.
....:         R = parent(p); x = R.gen()
....:         I = R.ideal(p)
....:         self._xbar = R.quotient(I).gen()
....:         basis_keys = [self._xbar**i for i in range(p.degree())]
....:         CombinatorialFreeModule.__init__(self, F, basis_keys,
....:                 category=Algebras(F).FiniteDimensional().WithBasis())
....:     def x(self):
....:         return self(self._xbar)
....:     def one(self):
....:         return self.basis()[self.base_ring().one()]
....:     def product_on_basis(self, w1, w2):
....:         return self.from_vector(vector(w1*w2))
sage: R.<x> = PolynomialRing(QQ)
sage: A = PQAlgebra(QQ, x**3 - x**2 + x + 1); y = A.x()
sage: a, b = y, 1 - y
sage: A.is_identity_decomposition_into_orthogonal_idempotents((a, b))
False


For comparison:

sage: # needs sage.libs.pari sage.modules
sage: A = PQAlgebra(QQ, x**2 - x); y = A.x()
sage: a, b = y, 1-y
sage: A.is_identity_decomposition_into_orthogonal_idempotents((a, b))
True
sage: A.is_identity_decomposition_into_orthogonal_idempotents((a, A.zero(), b))
True
sage: A = PQAlgebra(QQ, x**3 - x**2 + x - 1); y = A.x()
sage: a = (y**2 + 1) / 2
sage: b = 1 - a
sage: A.is_identity_decomposition_into_orthogonal_idempotents((a, b))
True

2. Some idempotents summing to 1 but not orthogonal:

sage: # needs sage.libs.pari sage.modules
sage: R.<x> = PolynomialRing(GF(2))
sage: A = PQAlgebra(GF(2), x)
sage: a = A.one()
sage: A.is_identity_decomposition_into_orthogonal_idempotents((a,))
True
sage: A.is_identity_decomposition_into_orthogonal_idempotents((a, a, a))
False

3. Some orthogonal idempotents not summing to the identity:

sage: # needs sage.libs.pari sage.modules
sage: A.is_identity_decomposition_into_orthogonal_idempotents((a,a))
False
sage: A.is_identity_decomposition_into_orthogonal_idempotents(())
False

isotypic_projective_modules(side='left')#

Return the isotypic projective side self-modules.

Let $$P_i$$ be representatives of the indecomposable projective side-modules of this finite dimensional algebra $$A$$, and $$S_i$$ be the associated simple modules.

The regular side representation of $$A$$ can be decomposed as a direct sum $$A = \bigoplus_i Q_i$$ where each $$Q_i$$ is an isotypic projective module; namely $$Q_i$$ is the direct sum of $$\dim S_i$$ copies of the indecomposable projective module $$P_i$$. This decomposition is not unique.

The isotypic projective modules are constructed as $$Q_i=e_iA$$, where the $$(e_i)_i$$ is the decomposition of the identity into orthogonal idempotents obtained by lifting the central orthogonal idempotents of the semisimple quotient of $$A$$.

INPUT:

• side – ‘left’ or ‘right’ (default: ‘left’)

OUTPUT: a list of subspaces of self.

EXAMPLES:

sage: # needs sage.graphs sage.modules sage.rings.number_field
sage: A = Algebras(QQ).FiniteDimensional().WithBasis().example(); A
An example of a finite dimensional algebra with basis:
the path algebra of the Kronecker quiver
(containing the arrows a:x->y and b:x->y) over Rational Field
sage: Q = A.isotypic_projective_modules(side="left"); Q
[Free module generated by {0} over Rational Field,
Free module generated by {0, 1, 2} over Rational Field]
sage: [[x.lift() for x in Qi.basis()]
....:  for Qi in Q]
[[x],
[y, a, b]]


We check that the sum of the dimensions of the isotypic projective modules is the dimension of self:

sage: sum([Qi.dimension() for Qi in Q]) == A.dimension()                # needs sage.graphs sage.modules sage.rings.number_field
True


Return a family of orthogonal idempotents of self that project on the central orthogonal idempotents of the semisimple quotient.

OUTPUT:

• a list of orthogonal idempotents obtained by lifting the central orthogonal idempotents of the semisimple quotient.

ALGORITHM:

The orthogonal idempotents of $$A$$ are obtained by lifting the central orthogonal idempotents of the semisimple quotient $$\overline{A}$$.

Namely, let $$(\overline{f_i})$$ be the central orthogonal idempotents of the semisimple quotient of $$A$$. We recursively construct orthogonal idempotents of $$A$$ by the following procedure: assuming $$(f_i)_{i < n}$$ is a set of already constructed orthogonal idempotent, we construct $$f_k$$ by idempotent lifting of $$(1-f) g (1-f)$$, where $$g$$ is any lift of $$\overline{e_k}$$ and $$f=\sum_{i<k} f_i$$.

See [CR1962] for correctness and termination proofs.

EXAMPLES:

sage: # needs sage.graphs sage.modules
sage: A = Algebras(QQ).FiniteDimensional().WithBasis().example(); A
An example of a finite dimensional algebra with basis:
the path algebra of the Kronecker quiver
(containing the arrows a:x->y and b:x->y) over Rational Field
(x, y)

sage: # needs sage.modules sage.rings.number_field
sage: Z12 = Monoids().Finite().example(); Z12
An example of a finite multiplicative monoid: the integers modulo 12
sage: A = Z12.algebra(QQ)
sage: sorted(idempotents, key=str)
[-B + 1/2*B + 1/2*B,
1/2*B - 1/2*B,
1/2*B + 1/2*B - B,
1/2*B - 1/2*B,
1/4*B + 1/4*B - 1/4*B - 1/4*B,
1/4*B - 1/2*B + 1/4*B - 1/4*B + 1/2*B - 1/4*B,
1/4*B - 1/2*B - 1/2*B + 1/4*B + 1/4*B + 1/4*B + B - 1/2*B - 1/2*B,
1/4*B - 1/4*B + 1/4*B - 1/4*B - 1/2*B + 1/2*B,
B]
sage: sum(idempotents) == 1
True
sage: all(e*e == e for e in idempotents)
True
sage: all(e*f == 0 and f*e == 0
....:     for e in idempotents for f in idempotents if e != f)
True


This is best tested with:

sage: A.is_identity_decomposition_into_orthogonal_idempotents(idempotents)          # needs sage.graphs sage.modules sage.rings.number_field
True


We construct orthogonal idempotents for the algebra of the $$0$$-Hecke monoid:

sage: # needs sage.combinat sage.graphs sage.groups sage.modules
sage: from sage.monoids.hecke_monoid import HeckeMonoid
sage: A = HeckeMonoid(SymmetricGroup(4)).algebra(QQ)
sage: A.is_identity_decomposition_into_orthogonal_idempotents(idempotents)
True

peirce_decomposition(idempotents=None, check=True)#

Return a Peirce decomposition of self.

Let $$(e_i)_i$$ be a collection of orthogonal idempotents of $$A$$ with sum $$1$$. The Peirce decomposition of $$A$$ is the decomposition of $$A$$ into the direct sum of the subspaces $$e_i A e_j$$.

With the default collection of orthogonal idempotents, one has

$\dim e_i A e_j = C_{i,j} \dim S_i \dim S_j$

where $$(S_i)_i$$ are the simple modules of $$A$$ and $$(C_{i,j})_{i, j}$$ is the Cartan invariants matrix.

INPUT:

• idempotents – a list of orthogonal idempotents $$(e_i)_{i=0,\ldots,n}$$ of the algebra that sum to $$1$$ (default: the idempotents returned by orthogonal_idempotents_central_mod_radical())

• check – (default: True) whether to check that the idempotents are indeed orthogonal and idempotent and sum to $$1$$

OUTPUT:

A list of lists $$l$$ such that l[i][j] is the subspace $$e_i A e_j$$.

EXAMPLES:

sage: # needs sage.graphs sage.groups sage.modules sage.rings.number_field
sage: A = Algebras(QQ).FiniteDimensional().WithBasis().example(); A
An example of a finite dimensional algebra with basis:
the path algebra of the Kronecker quiver
(containing the arrows a:x->y and b:x->y) over Rational Field
(x, y)
sage: decomposition = A.peirce_decomposition(); decomposition
[[Free module generated by {0} over Rational Field,
Free module generated by {0, 1} over Rational Field],
[Free module generated by {} over Rational Field,
Free module generated by {0} over Rational Field]]
sage: [ [[x.lift() for x in decomposition[i][j].basis()]
....:    for j in range(2)]
....:   for i in range(2)]
[[[x], [a, b]],
[[], [y]]]


We recover that the group algebra of the symmetric group $$S_4$$ is a block matrix algebra:

sage: # needs sage.groups sage.modules sage.rings.number_field
sage: A = SymmetricGroup(4).algebra(QQ)
sage: decomposition = A.peirce_decomposition()  # long time
sage: [[decomposition[i][j].dimension()         # long time (4s)
....:   for j in range(len(decomposition))]
....:  for i in range(len(decomposition))]
[[9, 0, 0, 0, 0],
[0, 9, 0, 0, 0],
[0, 0, 4, 0, 0],
[0, 0, 0, 1, 0],
[0, 0, 0, 0, 1]]


The dimension of each block is $$d^2$$, where $$d$$ is the dimension of the corresponding simple module of $$S_4$$. The latter are given by:

sage: [p.standard_tableaux().cardinality() for p in Partitions(4)]      # needs sage.combinat
[1, 3, 2, 3, 1]

peirce_summand(ei, ej)#

Return the Peirce decomposition summand $$e_i A e_j$$.

INPUT:

• self – an algebra $$A$$

• ei, ej – two idempotents of $$A$$

OUTPUT: $$e_i A e_j$$, as a subspace of $$A$$.

EXAMPLES:

sage: A = Algebras(QQ).FiniteDimensional().WithBasis().example()
sage: idemp = A.orthogonal_idempotents_central_mod_radical()            # needs sage.rings.number_field
sage: A.peirce_summand(idemp, idemp)                              # needs sage.rings.number_field
Free module generated by {0, 1} over Rational Field
sage: A.peirce_summand(idemp, idemp)                              # needs sage.rings.number_field
Free module generated by {} over Rational Field


We recover the $$2\times2$$ block of $$\QQ[S_4]$$ corresponding to the unique simple module of dimension $$2$$ of the symmetric group $$S_4$$:

sage: A4 = SymmetricGroup(4).algebra(QQ)                                # needs sage.groups
sage: e = A4.central_orthogonal_idempotents()                        # needs sage.groups sage.rings.number_field
sage: A4.peirce_summand(e, e)                                           # needs sage.groups sage.rings.number_field
Free module generated by {0, 1, 2, 3} over Rational Field

principal_ideal(a, side='left')#

Construct the side principal ideal generated by a.

EXAMPLES:

In order to highlight the difference between left and right principal ideals, our first example deals with a non commutative algebra:

sage: # needs sage.graphs sage.modules
sage: A = Algebras(QQ).FiniteDimensional().WithBasis().example(); A
An example of a finite dimensional algebra with basis:
the path algebra of the Kronecker quiver
(containing the arrows a:x->y and b:x->y) over Rational Field
sage: x, y, a, b = A.basis()


In this algebra, multiplication on the right by $$x$$ annihilates all basis elements but $$x$$:

sage: x*x, y*x, a*x, b*x                                                # needs sage.graphs sage.modules
(x, 0, 0, 0)


so the left ideal generated by $$x$$ is one-dimensional:

sage: Ax = A.principal_ideal(x, side='left'); Ax                        # needs sage.graphs sage.modules
Free module generated by {0} over Rational Field
sage: [B.lift() for B in Ax.basis()]                                    # needs sage.graphs sage.modules
[x]


Multiplication on the left by $$x$$ annihilates only $$x$$ and fixes the other basis elements:

sage: x*x, x*y, x*a, x*b                                                # needs sage.graphs sage.modules
(x, 0, a, b)


so the right ideal generated by $$x$$ is 3-dimensional:

sage: xA = A.principal_ideal(x, side='right'); xA                       # needs sage.graphs sage.modules
Free module generated by {0, 1, 2} over Rational Field
sage: [B.lift() for B in xA.basis()]                                    # needs sage.graphs sage.modules
[x, a, b]


Return the Jacobson radical of self.

This uses radical_basis(), whose default implementation handles algebras over fields of characteristic zero or fields of characteristic $$p$$ in which we can compute $$x^{1/p}$$.

EXAMPLES:

sage: # needs sage.graphs sage.modules
sage: A = Algebras(QQ).FiniteDimensional().WithBasis().example(); A
An example of a finite dimensional algebra with basis:
the path algebra of the Kronecker quiver
(containing the arrows a:x->y and b:x->y) over Rational Field
Radical of An example of a finite dimensional algebra with basis:
the path algebra of the Kronecker quiver
(containing the arrows a:x->y and b:x->y) over Rational Field


The radical is an ideal of $$A$$, and thus a finite dimensional non unital associative algebra:

sage: # needs sage.graphs sage.modules
sage: from sage.categories.associative_algebras import AssociativeAlgebras
True
False

sage: # needs sage.graphs sage.modules
2
Finite family {0: B, 1: B}
True
sage: [c.lift() for c in radical.basis()]
[a, b]


Todo

• Tell Sage that the radical is in fact an ideal;

• Pickling by construction, as A.center();

• Lazy evaluation of _repr_.

Return a basis of the Jacobson radical of this algebra.

Note

This implementation handles algebras over fields of characteristic zero (using Dixon’s lemma) or fields of characteristic $$p$$ in which we can compute $$x^{1/p}$$ [FR1985], [Eb1989].

OUTPUT:

• a list of elements of self.

EXAMPLES:

sage: # needs sage.graphs sage.modules
sage: A = Algebras(QQ).FiniteDimensional().WithBasis().example(); A
An example of a finite dimensional algebra with basis:
the path algebra of the Kronecker quiver
(containing the arrows a:x->y and b:x->y) over Rational Field
(a, b)


We construct the group algebra of the Klein Four-Group over the rationals:

sage: A = KleinFourGroup().algebra(QQ)                                  # needs sage.groups sage.modules


This algebra belongs to the category of finite dimensional algebras over the rationals:

sage: A in Algebras(QQ).FiniteDimensional().WithBasis()                 # needs sage.groups sage.modules
True


Since the field has characteristic $$0$$, Maschke’s Theorem tells us that the group algebra is semisimple. So its radical is the zero ideal:

sage: A in Algebras(QQ).Semisimple()                                    # needs sage.groups sage.modules
True
sage: A.radical_basis()                                                 # needs sage.groups sage.modules
()


Let’s work instead over a field of characteristic $$2$$:

sage: A = KleinFourGroup().algebra(GF(2))                               # needs sage.groups sage.modules
sage: A in Algebras(GF(2)).Semisimple()                                 # needs sage.groups sage.modules
False
sage: A.radical_basis()                                                 # needs sage.groups sage.modules
(() + (1,2)(3,4), (3,4) + (1,2)(3,4), (1,2) + (1,2)(3,4))


We now implement the algebra $$A = K[x] / (x^p-1)$$, where $$K$$ is a finite field of characteristic $$p$$, and check its radical; alas, we currently need to wrap $$A$$ to make it a proper ModulesWithBasis:

sage: # needs sage.modules
sage: class AnAlgebra(CombinatorialFreeModule):
....:     def __init__(self, F):
....:         R.<x> = PolynomialRing(F)
....:         I = R.ideal(x**F.characteristic()-F.one())
....:         self._xbar = R.quotient(I).gen()
....:         basis_keys = [self._xbar**i for i in range(F.characteristic())]
....:         CombinatorialFreeModule.__init__(self, F, basis_keys,
....:                 category=Algebras(F).FiniteDimensional().WithBasis())
....:     def one(self):
....:         return self.basis()[self.base_ring().one()]
....:     def product_on_basis(self, w1, w2):
....:         return self.from_vector(vector(w1*w2))
(B + 2*B[xbar^2], B[xbar] + 2*B[xbar^2])
(B + B[xbar],)
(B + 6*B[xbar^6], B[xbar] + 6*B[xbar^6], B[xbar^2] + 6*B[xbar^6],
B[xbar^3] + 6*B[xbar^6], B[xbar^4] + 6*B[xbar^6], B[xbar^5] + 6*B[xbar^6])

semisimple_quotient()#

Return the semisimple quotient of self.

This is the quotient of self by its radical.

EXAMPLES:

sage: # needs sage.graphs sage.modules
sage: A = Algebras(QQ).FiniteDimensional().WithBasis().example(); A
An example of a finite dimensional algebra with basis:
the path algebra of the Kronecker quiver
(containing the arrows a:x->y and b:x->y) over Rational Field
sage: a,b,x,y = sorted(A.basis())
sage: S = A.semisimple_quotient(); S
Semisimple quotient of An example of a finite dimensional algebra with basis:
the path algebra of the Kronecker quiver
(containing the arrows a:x->y and b:x->y) over Rational Field
sage: S in Algebras(QQ).Semisimple()
True
sage: S.basis()
Finite family {'x': B['x'], 'y': B['y']}
sage: xs,ys = sorted(S.basis())
sage: (xs + ys) * xs
B['x']


Sanity check: the semisimple quotient of the $$n$$-th descent algebra of the symmetric group is of dimension the number of partitions of $$n$$:

sage: [ DescentAlgebra(QQ,n).B().semisimple_quotient().dimension()      # needs sage.combinat sage.modules
....:   for n in range(6) ]
[1, 1, 2, 3, 5, 7]
sage: [Partitions(n).cardinality() for n in range(10)]                  # needs sage.combinat
[1, 1, 2, 3, 5, 7, 11, 15, 22, 30]


Todo

• Pickling by construction, as A.semisimple_quotient()?

• Lazy evaluation of _repr_

class SubcategoryMethods#

Bases: object

Cellular()#

Return the full subcategory of the cellular objects of self.

EXAMPLES:

sage: Algebras(QQ).FiniteDimensional().WithBasis().Cellular()
Category of finite dimensional cellular algebras with basis
over Rational Field