Finite dimensional algebras with basis#
Todo
Quotients of polynomial rings.
Quotients in general.
Matrix rings.
REFERENCES:
- class sage.categories.finite_dimensional_algebras_with_basis.FiniteDimensionalAlgebrasWithBasis(base_category)[source]#
Bases:
CategoryWithAxiom_over_base_ring
The category of finite dimensional algebras with a distinguished basis.
EXAMPLES:
sage: C = FiniteDimensionalAlgebrasWithBasis(QQ); C Category of finite dimensional algebras with basis over Rational Field sage: C.super_categories() [Category of algebras with basis over Rational Field, Category of finite dimensional magmatic algebras with basis over Rational Field] sage: C.example() # needs sage.modules An example of a finite dimensional algebra with basis: the path algebra of the Kronecker quiver (containing the arrows a:x->y and b:x->y) over Rational Field
>>> from sage.all import * >>> C = FiniteDimensionalAlgebrasWithBasis(QQ); C Category of finite dimensional algebras with basis over Rational Field >>> C.super_categories() [Category of algebras with basis over Rational Field, Category of finite dimensional magmatic algebras with basis over Rational Field] >>> C.example() # needs sage.modules An example of a finite dimensional algebra with basis: the path algebra of the Kronecker quiver (containing the arrows a:x->y and b:x->y) over Rational Field
- class Cellular(base_category)[source]#
Bases:
CategoryWithAxiom_over_base_ring
Cellular algebras.
Let \(R\) be a commutative ring. A \(R\)-algebra \(A\) is a cellular algebra if it has a cell datum, which is a tuple \((\Lambda, i, M, C)\), where \(\Lambda\) is finite poset with order \(\ge\), if \(\mu \in \Lambda\) then \(T(\mu)\) is a finite set and
\[C \colon \coprod_{\mu\in\Lambda}T(\mu) \times T(\mu) \longrightarrow A; (\mu,s,t) \mapsto c^\mu_{st} \text{ is an injective map}\]such that the following holds:
The set \(\{c^\mu_{st}\mid \mu\in\Lambda, s,t\in T(\mu)\}\) is a basis of \(A\).
If \(a \in A\) and \(\mu\in\Lambda, s,t \in T(\mu)\) then:
\[a c^\mu_{st} = \sum_{u\in T(\mu)} r_a(s,u) c^\mu_{ut} \pmod{A^{>\mu}},\]where \(A^{>\mu}\) is spanned by
\[\{ c^\nu_{ab} \mid \nu > \mu \text{ and } a,b \in T(\nu) \}.\]Moreover, the scalar \(r_a(s,u)\) depends only on \(a\), \(s\) and \(u\) and, in particular, is independent of \(t\).
The map \(\iota \colon A \longrightarrow A; c^\mu_{st} \mapsto c^\mu_{ts}\) is an algebra anti-isomorphism.
A cellular basis for \(A\) is any basis of the form \(\{c^\mu_{st} \mid \mu \in \Lambda, s,t \in T(\mu)\}\).
Note that in particular, the scalars \(r_a(u, s)\) in the second condition do not depend on \(t\).
REFERENCES:
- class ElementMethods[source]#
Bases:
object
- cellular_involution()[source]#
Return the cellular involution on
self
.EXAMPLES:
sage: # needs sage.groups sage.modules sage: S = SymmetricGroupAlgebra(QQ, 4) sage: elt = S([3,1,2,4]) sage: ci = elt.cellular_involution(); ci 7/48*[1, 3, 2, 4] + 49/48*[2, 3, 1, 4] - 1/48*[3, 1, 2, 4] - 7/48*[3, 2, 1, 4] sage: ci.cellular_involution() [3, 1, 2, 4]
>>> from sage.all import * >>> # needs sage.groups sage.modules >>> S = SymmetricGroupAlgebra(QQ, Integer(4)) >>> elt = S([Integer(3),Integer(1),Integer(2),Integer(4)]) >>> ci = elt.cellular_involution(); ci 7/48*[1, 3, 2, 4] + 49/48*[2, 3, 1, 4] - 1/48*[3, 1, 2, 4] - 7/48*[3, 2, 1, 4] >>> ci.cellular_involution() [3, 1, 2, 4]
- class ParentMethods[source]#
Bases:
object
- cell_module(mu, **kwds)[source]#
Return the cell module indexed by
mu
.EXAMPLES:
sage: S = SymmetricGroupAlgebra(QQ, 3) # needs sage.groups sage.modules sage: S.cell_module(Partition([2,1])) # needs sage.combinat sage.groups sage.modules Cell module indexed by [2, 1] of Cellular basis of Symmetric group algebra of order 3 over Rational Field
>>> from sage.all import * >>> S = SymmetricGroupAlgebra(QQ, Integer(3)) # needs sage.groups sage.modules >>> S.cell_module(Partition([Integer(2),Integer(1)])) # needs sage.combinat sage.groups sage.modules Cell module indexed by [2, 1] of Cellular basis of Symmetric group algebra of order 3 over Rational Field
- cell_module_indices(mu)[source]#
Return the indices of the cell module of
self
indexed bymu
.This is the finite set \(M(\lambda)\).
EXAMPLES:
sage: S = SymmetricGroupAlgebra(QQ, 3) # needs sage.groups sage.modules sage: S.cell_module_indices([2,1]) # needs sage.groups sage.modules Standard tableaux of shape [2, 1]
>>> from sage.all import * >>> S = SymmetricGroupAlgebra(QQ, Integer(3)) # needs sage.groups sage.modules >>> S.cell_module_indices([Integer(2),Integer(1)]) # needs sage.groups sage.modules Standard tableaux of shape [2, 1]
- cell_poset()[source]#
Return the cell poset of
self
.EXAMPLES:
sage: S = SymmetricGroupAlgebra(QQ, 4) # needs sage.groups sage.modules sage: S.cell_poset() # needs sage.groups sage.modules Finite poset containing 5 elements
>>> from sage.all import * >>> S = SymmetricGroupAlgebra(QQ, Integer(4)) # needs sage.groups sage.modules >>> S.cell_poset() # needs sage.groups sage.modules Finite poset containing 5 elements
- cells()[source]#
Return the cells of
self
.EXAMPLES:
sage: S = SymmetricGroupAlgebra(QQ, 3) # needs sage.groups sage.modules sage: dict(S.cells()) # needs sage.groups sage.modules {[1, 1, 1]: Standard tableaux of shape [1, 1, 1], [2, 1]: Standard tableaux of shape [2, 1], [3]: Standard tableaux of shape [3]}
>>> from sage.all import * >>> S = SymmetricGroupAlgebra(QQ, Integer(3)) # needs sage.groups sage.modules >>> dict(S.cells()) # needs sage.groups sage.modules {[1, 1, 1]: Standard tableaux of shape [1, 1, 1], [2, 1]: Standard tableaux of shape [2, 1], [3]: Standard tableaux of shape [3]}
- cellular_basis()[source]#
Return the cellular basis of
self
.EXAMPLES:
sage: S = SymmetricGroupAlgebra(QQ, 3) # needs sage.groups sage.modules sage: S.cellular_basis() # needs sage.groups sage.modules Cellular basis of Symmetric group algebra of order 3 over Rational Field
>>> from sage.all import * >>> S = SymmetricGroupAlgebra(QQ, Integer(3)) # needs sage.groups sage.modules >>> S.cellular_basis() # needs sage.groups sage.modules Cellular basis of Symmetric group algebra of order 3 over Rational Field
- cellular_involution(x)[source]#
Return the cellular involution of
x
inself
.EXAMPLES:
sage: S = SymmetricGroupAlgebra(QQ, 3) # needs sage.groups sage.modules sage: for b in S.basis(): b, S.cellular_involution(b) # needs sage.groups sage.modules ([1, 2, 3], [1, 2, 3]) ([1, 3, 2], 49/48*[1, 3, 2] + 7/48*[2, 3, 1] - 7/48*[3, 1, 2] - 1/48*[3, 2, 1]) ([2, 1, 3], [2, 1, 3]) ([2, 3, 1], -7/48*[1, 3, 2] - 1/48*[2, 3, 1] + 49/48*[3, 1, 2] + 7/48*[3, 2, 1]) ([3, 1, 2], 7/48*[1, 3, 2] + 49/48*[2, 3, 1] - 1/48*[3, 1, 2] - 7/48*[3, 2, 1]) ([3, 2, 1], -1/48*[1, 3, 2] - 7/48*[2, 3, 1] + 7/48*[3, 1, 2] + 49/48*[3, 2, 1])
>>> from sage.all import * >>> S = SymmetricGroupAlgebra(QQ, Integer(3)) # needs sage.groups sage.modules >>> for b in S.basis(): b, S.cellular_involution(b) # needs sage.groups sage.modules ([1, 2, 3], [1, 2, 3]) ([1, 3, 2], 49/48*[1, 3, 2] + 7/48*[2, 3, 1] - 7/48*[3, 1, 2] - 1/48*[3, 2, 1]) ([2, 1, 3], [2, 1, 3]) ([2, 3, 1], -7/48*[1, 3, 2] - 1/48*[2, 3, 1] + 49/48*[3, 1, 2] + 7/48*[3, 2, 1]) ([3, 1, 2], 7/48*[1, 3, 2] + 49/48*[2, 3, 1] - 1/48*[3, 1, 2] - 7/48*[3, 2, 1]) ([3, 2, 1], -1/48*[1, 3, 2] - 7/48*[2, 3, 1] + 7/48*[3, 1, 2] + 49/48*[3, 2, 1])
- simple_module_parameterization()[source]#
Return a parameterization of the simple modules of
self
.The set of simple modules are parameterized by \(\lambda \in \Lambda\) such that the cell module bilinear form \(\Phi_{\lambda} \neq 0\).
EXAMPLES:
sage: TL = TemperleyLiebAlgebra(5, 30, QQ) # semisimple sage: len(TL.radical_basis()) 0 sage: TL.simple_module_parameterization() (1, 3, 5) sage: TL = TemperleyLiebAlgebra(5, 1, QQ) # not semisimple sage: len(TL.radical_basis()) 24 sage: TL.simple_module_parameterization() (1, 3, 5) sage: TL = TemperleyLiebAlgebra(6, 30, QQ) # semisimple sage: all(TL.cell_module(la).dimension() ....: == TL.cell_module(la).simple_module().dimension() ....: for la in TL.simple_module_parameterization()) True sage: TL.simple_module_parameterization() (0, 2, 4, 6) sage: TL = TemperleyLiebAlgebra(6, 0, QQ) # not semisimple sage: TL.simple_module_parameterization() (2, 4, 6)
>>> from sage.all import * >>> TL = TemperleyLiebAlgebra(Integer(5), Integer(30), QQ) # semisimple >>> len(TL.radical_basis()) 0 >>> TL.simple_module_parameterization() (1, 3, 5) >>> TL = TemperleyLiebAlgebra(Integer(5), Integer(1), QQ) # not semisimple >>> len(TL.radical_basis()) 24 >>> TL.simple_module_parameterization() (1, 3, 5) >>> TL = TemperleyLiebAlgebra(Integer(6), Integer(30), QQ) # semisimple >>> all(TL.cell_module(la).dimension() ... == TL.cell_module(la).simple_module().dimension() ... for la in TL.simple_module_parameterization()) True >>> TL.simple_module_parameterization() (0, 2, 4, 6) >>> TL = TemperleyLiebAlgebra(Integer(6), Integer(0), QQ) # not semisimple >>> TL.simple_module_parameterization() (2, 4, 6)
- class TensorProducts(category, *args)[source]#
Bases:
TensorProductsCategory
The category of cellular algebras constructed by tensor product of cellular algebras.
- class ParentMethods[source]#
Bases:
object
- cell_module_indices(mu)[source]#
Return the indices of the cell module of
self
indexed bymu
.This is the finite set \(M(\lambda)\).
EXAMPLES:
sage: # needs sage.groups sage.modules sage: S2 = SymmetricGroupAlgebra(QQ, 2) sage: S3 = SymmetricGroupAlgebra(QQ, 3) sage: T = S2.tensor(S3) sage: T.cell_module_indices(([1,1], [2,1])) The Cartesian product of (Standard tableaux of shape [1, 1], Standard tableaux of shape [2, 1])
>>> from sage.all import * >>> # needs sage.groups sage.modules >>> S2 = SymmetricGroupAlgebra(QQ, Integer(2)) >>> S3 = SymmetricGroupAlgebra(QQ, Integer(3)) >>> T = S2.tensor(S3) >>> T.cell_module_indices(([Integer(1),Integer(1)], [Integer(2),Integer(1)])) The Cartesian product of (Standard tableaux of shape [1, 1], Standard tableaux of shape [2, 1])
- cell_poset()[source]#
Return the cell poset of
self
.EXAMPLES:
sage: # needs sage.groups sage.modules sage: S2 = SymmetricGroupAlgebra(QQ, 2) sage: S3 = SymmetricGroupAlgebra(QQ, 3) sage: T = S2.tensor(S3) sage: T.cell_poset() # needs sage.combinat sage.graphs Finite poset containing 6 elements
>>> from sage.all import * >>> # needs sage.groups sage.modules >>> S2 = SymmetricGroupAlgebra(QQ, Integer(2)) >>> S3 = SymmetricGroupAlgebra(QQ, Integer(3)) >>> T = S2.tensor(S3) >>> T.cell_poset() # needs sage.combinat sage.graphs Finite poset containing 6 elements
- cellular_involution()[source]#
Return the image of the cellular involution of the basis element indexed by
i
.EXAMPLES:
sage: # needs sage.groups sage.modules sage: S2 = SymmetricGroupAlgebra(QQ, 2) sage: S3 = SymmetricGroupAlgebra(QQ, 3) sage: T = S2.tensor(S3) sage: for b in T.basis(): b, T.cellular_involution(b) ([1, 2] # [1, 2, 3], [1, 2] # [1, 2, 3]) ([1, 2] # [1, 3, 2], 49/48*[1, 2] # [1, 3, 2] + 7/48*[1, 2] # [2, 3, 1] - 7/48*[1, 2] # [3, 1, 2] - 1/48*[1, 2] # [3, 2, 1]) ([1, 2] # [2, 1, 3], [1, 2] # [2, 1, 3]) ([1, 2] # [2, 3, 1], -7/48*[1, 2] # [1, 3, 2] - 1/48*[1, 2] # [2, 3, 1] + 49/48*[1, 2] # [3, 1, 2] + 7/48*[1, 2] # [3, 2, 1]) ([1, 2] # [3, 1, 2], 7/48*[1, 2] # [1, 3, 2] + 49/48*[1, 2] # [2, 3, 1] - 1/48*[1, 2] # [3, 1, 2] - 7/48*[1, 2] # [3, 2, 1]) ([1, 2] # [3, 2, 1], -1/48*[1, 2] # [1, 3, 2] - 7/48*[1, 2] # [2, 3, 1] + 7/48*[1, 2] # [3, 1, 2] + 49/48*[1, 2] # [3, 2, 1]) ([2, 1] # [1, 2, 3], [2, 1] # [1, 2, 3]) ([2, 1] # [1, 3, 2], 49/48*[2, 1] # [1, 3, 2] + 7/48*[2, 1] # [2, 3, 1] - 7/48*[2, 1] # [3, 1, 2] - 1/48*[2, 1] # [3, 2, 1]) ([2, 1] # [2, 1, 3], [2, 1] # [2, 1, 3]) ([2, 1] # [2, 3, 1], -7/48*[2, 1] # [1, 3, 2] - 1/48*[2, 1] # [2, 3, 1] + 49/48*[2, 1] # [3, 1, 2] + 7/48*[2, 1] # [3, 2, 1]) ([2, 1] # [3, 1, 2], 7/48*[2, 1] # [1, 3, 2] + 49/48*[2, 1] # [2, 3, 1] - 1/48*[2, 1] # [3, 1, 2] - 7/48*[2, 1] # [3, 2, 1]) ([2, 1] # [3, 2, 1], -1/48*[2, 1] # [1, 3, 2] - 7/48*[2, 1] # [2, 3, 1] + 7/48*[2, 1] # [3, 1, 2] + 49/48*[2, 1] # [3, 2, 1])
>>> from sage.all import * >>> # needs sage.groups sage.modules >>> S2 = SymmetricGroupAlgebra(QQ, Integer(2)) >>> S3 = SymmetricGroupAlgebra(QQ, Integer(3)) >>> T = S2.tensor(S3) >>> for b in T.basis(): b, T.cellular_involution(b) ([1, 2] # [1, 2, 3], [1, 2] # [1, 2, 3]) ([1, 2] # [1, 3, 2], 49/48*[1, 2] # [1, 3, 2] + 7/48*[1, 2] # [2, 3, 1] - 7/48*[1, 2] # [3, 1, 2] - 1/48*[1, 2] # [3, 2, 1]) ([1, 2] # [2, 1, 3], [1, 2] # [2, 1, 3]) ([1, 2] # [2, 3, 1], -7/48*[1, 2] # [1, 3, 2] - 1/48*[1, 2] # [2, 3, 1] + 49/48*[1, 2] # [3, 1, 2] + 7/48*[1, 2] # [3, 2, 1]) ([1, 2] # [3, 1, 2], 7/48*[1, 2] # [1, 3, 2] + 49/48*[1, 2] # [2, 3, 1] - 1/48*[1, 2] # [3, 1, 2] - 7/48*[1, 2] # [3, 2, 1]) ([1, 2] # [3, 2, 1], -1/48*[1, 2] # [1, 3, 2] - 7/48*[1, 2] # [2, 3, 1] + 7/48*[1, 2] # [3, 1, 2] + 49/48*[1, 2] # [3, 2, 1]) ([2, 1] # [1, 2, 3], [2, 1] # [1, 2, 3]) ([2, 1] # [1, 3, 2], 49/48*[2, 1] # [1, 3, 2] + 7/48*[2, 1] # [2, 3, 1] - 7/48*[2, 1] # [3, 1, 2] - 1/48*[2, 1] # [3, 2, 1]) ([2, 1] # [2, 1, 3], [2, 1] # [2, 1, 3]) ([2, 1] # [2, 3, 1], -7/48*[2, 1] # [1, 3, 2] - 1/48*[2, 1] # [2, 3, 1] + 49/48*[2, 1] # [3, 1, 2] + 7/48*[2, 1] # [3, 2, 1]) ([2, 1] # [3, 1, 2], 7/48*[2, 1] # [1, 3, 2] + 49/48*[2, 1] # [2, 3, 1] - 1/48*[2, 1] # [3, 1, 2] - 7/48*[2, 1] # [3, 2, 1]) ([2, 1] # [3, 2, 1], -1/48*[2, 1] # [1, 3, 2] - 7/48*[2, 1] # [2, 3, 1] + 7/48*[2, 1] # [3, 1, 2] + 49/48*[2, 1] # [3, 2, 1])
- extra_super_categories()[source]#
Tensor products of cellular algebras are cellular.
EXAMPLES:
sage: cat = Algebras(QQ).FiniteDimensional().WithBasis() sage: cat.Cellular().TensorProducts().extra_super_categories() [Category of finite dimensional cellular algebras with basis over Rational Field]
>>> from sage.all import * >>> cat = Algebras(QQ).FiniteDimensional().WithBasis() >>> cat.Cellular().TensorProducts().extra_super_categories() [Category of finite dimensional cellular algebras with basis over Rational Field]
- class ElementMethods[source]#
Bases:
object
- on_left_matrix(base_ring=None, action=<built-in function mul>, side='left')[source]#
Return the matrix of the action of
self
on the algebra.INPUT:
base_ring
– the base ring for the matrix to be constructedaction
– a bivariate function (default:operator.mul()
)side
– ‘left’ or ‘right’ (default: ‘left’)
EXAMPLES:
sage: # needs sage.groups sage.modules sage: QS3 = SymmetricGroupAlgebra(QQ, 3) sage: a = QS3([2,1,3]) sage: a.to_matrix(side='left') [0 0 1 0 0 0] [0 0 0 0 1 0] [1 0 0 0 0 0] [0 0 0 0 0 1] [0 1 0 0 0 0] [0 0 0 1 0 0] sage: a.to_matrix(side='right') [0 0 1 0 0 0] [0 0 0 1 0 0] [1 0 0 0 0 0] [0 1 0 0 0 0] [0 0 0 0 0 1] [0 0 0 0 1 0] sage: a.to_matrix(base_ring=RDF, side="left") [0.0 0.0 1.0 0.0 0.0 0.0] [0.0 0.0 0.0 0.0 1.0 0.0] [1.0 0.0 0.0 0.0 0.0 0.0] [0.0 0.0 0.0 0.0 0.0 1.0] [0.0 1.0 0.0 0.0 0.0 0.0] [0.0 0.0 0.0 1.0 0.0 0.0]
>>> from sage.all import * >>> # needs sage.groups sage.modules >>> QS3 = SymmetricGroupAlgebra(QQ, Integer(3)) >>> a = QS3([Integer(2),Integer(1),Integer(3)]) >>> a.to_matrix(side='left') [0 0 1 0 0 0] [0 0 0 0 1 0] [1 0 0 0 0 0] [0 0 0 0 0 1] [0 1 0 0 0 0] [0 0 0 1 0 0] >>> a.to_matrix(side='right') [0 0 1 0 0 0] [0 0 0 1 0 0] [1 0 0 0 0 0] [0 1 0 0 0 0] [0 0 0 0 0 1] [0 0 0 0 1 0] >>> a.to_matrix(base_ring=RDF, side="left") [0.0 0.0 1.0 0.0 0.0 0.0] [0.0 0.0 0.0 0.0 1.0 0.0] [1.0 0.0 0.0 0.0 0.0 0.0] [0.0 0.0 0.0 0.0 0.0 1.0] [0.0 1.0 0.0 0.0 0.0 0.0] [0.0 0.0 0.0 1.0 0.0 0.0]
AUTHORS: Mike Hansen, …
- to_matrix(base_ring=None, action=<built-in function mul>, side='left')[source]#
Return the matrix of the action of
self
on the algebra.INPUT:
base_ring
– the base ring for the matrix to be constructedaction
– a bivariate function (default:operator.mul()
)side
– ‘left’ or ‘right’ (default: ‘left’)
EXAMPLES:
sage: # needs sage.groups sage.modules sage: QS3 = SymmetricGroupAlgebra(QQ, 3) sage: a = QS3([2,1,3]) sage: a.to_matrix(side='left') [0 0 1 0 0 0] [0 0 0 0 1 0] [1 0 0 0 0 0] [0 0 0 0 0 1] [0 1 0 0 0 0] [0 0 0 1 0 0] sage: a.to_matrix(side='right') [0 0 1 0 0 0] [0 0 0 1 0 0] [1 0 0 0 0 0] [0 1 0 0 0 0] [0 0 0 0 0 1] [0 0 0 0 1 0] sage: a.to_matrix(base_ring=RDF, side="left") [0.0 0.0 1.0 0.0 0.0 0.0] [0.0 0.0 0.0 0.0 1.0 0.0] [1.0 0.0 0.0 0.0 0.0 0.0] [0.0 0.0 0.0 0.0 0.0 1.0] [0.0 1.0 0.0 0.0 0.0 0.0] [0.0 0.0 0.0 1.0 0.0 0.0]
>>> from sage.all import * >>> # needs sage.groups sage.modules >>> QS3 = SymmetricGroupAlgebra(QQ, Integer(3)) >>> a = QS3([Integer(2),Integer(1),Integer(3)]) >>> a.to_matrix(side='left') [0 0 1 0 0 0] [0 0 0 0 1 0] [1 0 0 0 0 0] [0 0 0 0 0 1] [0 1 0 0 0 0] [0 0 0 1 0 0] >>> a.to_matrix(side='right') [0 0 1 0 0 0] [0 0 0 1 0 0] [1 0 0 0 0 0] [0 1 0 0 0 0] [0 0 0 0 0 1] [0 0 0 0 1 0] >>> a.to_matrix(base_ring=RDF, side="left") [0.0 0.0 1.0 0.0 0.0 0.0] [0.0 0.0 0.0 0.0 1.0 0.0] [1.0 0.0 0.0 0.0 0.0 0.0] [0.0 0.0 0.0 0.0 0.0 1.0] [0.0 1.0 0.0 0.0 0.0 0.0] [0.0 0.0 0.0 1.0 0.0 0.0]
AUTHORS: Mike Hansen, …
- class ParentMethods[source]#
Bases:
object
- cartan_invariants_matrix()[source]#
Return the Cartan invariants matrix of the algebra.
OUTPUT: a matrix of non negative integers
Let \(A\) be this finite dimensional algebra and \((S_i)_{i\in I}\) be representatives of the right simple modules of \(A\). Note that their adjoints \(S_i^*\) are representatives of the left simple modules.
Let \((P^L_i)_{i\in I}\) and \((P^R_i)_{i\in I}\) be respectively representatives of the corresponding indecomposable projective left and right modules of \(A\). In particular, we assume that the indexing is consistent so that \(S_i^*=\operatorname{top} P^L_i\) and \(S_i=\operatorname{top} P^R_i\).
The Cartan invariant matrix \((C_{i,j})_{i,j\in I}\) is a matrix of non negative integers that encodes much of the representation theory of \(A\); namely:
\(C_{i,j}\) counts how many times \(S_i^*\otimes S_j\) appears as composition factor of \(A\) seen as a bimodule over itself;
\(C_{i,j}=\dim Hom_A(P^R_j, P^R_i)\);
\(C_{i,j}\) counts how many times \(S_j\) appears as composition factor of \(P^R_i\);
\(C_{i,j}=\dim Hom_A(P^L_i, P^L_j)\);
\(C_{i,j}\) counts how many times \(S_i^*\) appears as composition factor of \(P^L_j\).
In the commutative case, the Cartan invariant matrix is diagonal. In the context of solving systems of multivariate polynomial equations of dimension zero, \(A\) is the quotient of the polynomial ring by the ideal generated by the equations, the simple modules correspond to the roots, and the numbers \(C_{i,i}\) give the multiplicities of those roots.
Note
For simplicity, the current implementation assumes that the index set \(I\) is of the form \(\{0,\dots,n-1\}\). Better indexations will be possible in the future.
ALGORITHM:
The Cartan invariant matrix of \(A\) is computed from the dimension of the summands of its Peirce decomposition.
EXAMPLES:
For a semisimple algebra, in particular for group algebras in characteristic zero, the Cartan invariants matrix is the identity:
sage: A3 = SymmetricGroup(3).algebra(QQ) # needs sage.combinat sage.groups sage.modules sage: A3.cartan_invariants_matrix() # needs sage.combinat sage.groups sage.modules [1 0 0] [0 1 0] [0 0 1]
>>> from sage.all import * >>> A3 = SymmetricGroup(Integer(3)).algebra(QQ) # needs sage.combinat sage.groups sage.modules >>> A3.cartan_invariants_matrix() # needs sage.combinat sage.groups sage.modules [1 0 0] [0 1 0] [0 0 1]
For the path algebra of a quiver, the Cartan invariants matrix counts the number of paths between two vertices:
sage: A = Algebras(QQ).FiniteDimensional().WithBasis().example() sage: A.cartan_invariants_matrix() # needs sage.modules sage.rings.number_field [1 2] [0 1]
>>> from sage.all import * >>> A = Algebras(QQ).FiniteDimensional().WithBasis().example() >>> A.cartan_invariants_matrix() # needs sage.modules sage.rings.number_field [1 2] [0 1]
In the commutative case, the Cartan invariant matrix is diagonal:
sage: Z12 = Monoids().Finite().example(); Z12 An example of a finite multiplicative monoid: the integers modulo 12 sage: A = Z12.algebra(QQ) # needs sage.modules sage: A.cartan_invariants_matrix() # needs sage.modules sage.rings.number_field [1 0 0 0 0 0 0 0 0] [0 1 0 0 0 0 0 0 0] [0 0 2 0 0 0 0 0 0] [0 0 0 1 0 0 0 0 0] [0 0 0 0 2 0 0 0 0] [0 0 0 0 0 1 0 0 0] [0 0 0 0 0 0 1 0 0] [0 0 0 0 0 0 0 2 0] [0 0 0 0 0 0 0 0 1]
>>> from sage.all import * >>> Z12 = Monoids().Finite().example(); Z12 An example of a finite multiplicative monoid: the integers modulo 12 >>> A = Z12.algebra(QQ) # needs sage.modules >>> A.cartan_invariants_matrix() # needs sage.modules sage.rings.number_field [1 0 0 0 0 0 0 0 0] [0 1 0 0 0 0 0 0 0] [0 0 2 0 0 0 0 0 0] [0 0 0 1 0 0 0 0 0] [0 0 0 0 2 0 0 0 0] [0 0 0 0 0 1 0 0 0] [0 0 0 0 0 0 1 0 0] [0 0 0 0 0 0 0 2 0] [0 0 0 0 0 0 0 0 1]
With the algebra of the \(0\)-Hecke monoid:
sage: # needs sage.combinat sage.groups sage.modules sage: from sage.monoids.hecke_monoid import HeckeMonoid sage: A = HeckeMonoid(SymmetricGroup(4)).algebra(QQ) sage: A.cartan_invariants_matrix() # needs sage.rings.number_field [1 0 0 0 0 0 0 0] [0 2 1 0 1 1 0 0] [0 1 1 0 1 0 0 0] [0 0 0 1 0 1 1 0] [0 1 1 0 1 0 0 0] [0 1 0 1 0 2 1 0] [0 0 0 1 0 1 1 0] [0 0 0 0 0 0 0 1]
>>> from sage.all import * >>> # needs sage.combinat sage.groups sage.modules >>> from sage.monoids.hecke_monoid import HeckeMonoid >>> A = HeckeMonoid(SymmetricGroup(Integer(4))).algebra(QQ) >>> A.cartan_invariants_matrix() # needs sage.rings.number_field [1 0 0 0 0 0 0 0] [0 2 1 0 1 1 0 0] [0 1 1 0 1 0 0 0] [0 0 0 1 0 1 1 0] [0 1 1 0 1 0 0 0] [0 1 0 1 0 2 1 0] [0 0 0 1 0 1 1 0] [0 0 0 0 0 0 0 1]
- center()[source]#
Return the center of
self
.See also
EXAMPLES:
sage: # needs sage.graphs sage.modules sage: A = Algebras(QQ).FiniteDimensional().WithBasis().example(); A An example of a finite dimensional algebra with basis: the path algebra of the Kronecker quiver (containing the arrows a:x->y and b:x->y) over Rational Field sage: center = A.center(); center Center of An example of a finite dimensional algebra with basis: the path algebra of the Kronecker quiver (containing the arrows a:x->y and b:x->y) over Rational Field sage: center in Algebras(QQ).WithBasis().FiniteDimensional().Commutative() True sage: center.dimension() 1 sage: center.basis() Finite family {0: B[0]} sage: center.ambient() is A True sage: [c.lift() for c in center.basis()] [x + y]
>>> from sage.all import * >>> # needs sage.graphs sage.modules >>> A = Algebras(QQ).FiniteDimensional().WithBasis().example(); A An example of a finite dimensional algebra with basis: the path algebra of the Kronecker quiver (containing the arrows a:x->y and b:x->y) over Rational Field >>> center = A.center(); center Center of An example of a finite dimensional algebra with basis: the path algebra of the Kronecker quiver (containing the arrows a:x->y and b:x->y) over Rational Field >>> center in Algebras(QQ).WithBasis().FiniteDimensional().Commutative() True >>> center.dimension() 1 >>> center.basis() Finite family {0: B[0]} >>> center.ambient() is A True >>> [c.lift() for c in center.basis()] [x + y]
The center of a semisimple algebra is semisimple:
sage: A = DihedralGroup(6).algebra(QQ) # needs sage.groups sage.modules sage: A.center() in Algebras(QQ).Semisimple() # needs sage.groups sage.modules True
>>> from sage.all import * >>> A = DihedralGroup(Integer(6)).algebra(QQ) # needs sage.groups sage.modules >>> A.center() in Algebras(QQ).Semisimple() # needs sage.groups sage.modules True
Todo
Pickling by construction, as
A.center()
?Lazy evaluation of
_repr_
- center_basis()[source]#
Return a basis of the center of
self
.OUTPUT:
a list of elements of
self
.
See also
EXAMPLES:
sage: # needs sage.graphs sage.modules sage: A = Algebras(QQ).FiniteDimensional().WithBasis().example(); A An example of a finite dimensional algebra with basis: the path algebra of the Kronecker quiver (containing the arrows a:x->y and b:x->y) over Rational Field sage: A.center_basis() (x + y,)
>>> from sage.all import * >>> # needs sage.graphs sage.modules >>> A = Algebras(QQ).FiniteDimensional().WithBasis().example(); A An example of a finite dimensional algebra with basis: the path algebra of the Kronecker quiver (containing the arrows a:x->y and b:x->y) over Rational Field >>> A.center_basis() (x + y,)
- ideal_submodule(gens, side='left', category=None, *args, **opts)[source]#
Return the
side
ideal ofself
generated bygens
as a submodule.Todo
This is not generally compatible with the implementation of the ideals. This method should be folded into the
ideal
method after the corresponding classes are refactored to be compatible.EXAMPLES:
sage: scoeffs = {('a','e'): {'a':1}, ('b','e'): {'a':1, 'b':1}, ....: ('c','d'): {'a':1}, ('c','e'): {'c':1}} sage: L.<a,b,c,d,e> = LieAlgebra(QQ, scoeffs) sage: MS = MatrixSpace(QQ, 5) sage: I = MS.ideal_submodule([bg.adjoint_matrix() for bg in L.lie_algebra_generators()]) sage: I.dimension() 25
>>> from sage.all import * >>> scoeffs = {('a','e'): {'a':Integer(1)}, ('b','e'): {'a':Integer(1), 'b':Integer(1)}, ... ('c','d'): {'a':Integer(1)}, ('c','e'): {'c':Integer(1)}} >>> L = LieAlgebra(QQ, scoeffs, names=('a', 'b', 'c', 'd', 'e',)); (a, b, c, d, e,) = L._first_ngens(5) >>> MS = MatrixSpace(QQ, Integer(5)) >>> I = MS.ideal_submodule([bg.adjoint_matrix() for bg in L.lie_algebra_generators()]) >>> I.dimension() 25
- idempotent_lift(x)[source]#
Lift an idempotent of the semisimple quotient into an idempotent of
self
.Let \(A\) be this finite dimensional algebra and \(\pi\) be the projection \(A \rightarrow \overline{A}\) on its semisimple quotient. Let \(\overline{x}\) be an idempotent of \(\overline A\), and \(x\) any lift thereof in \(A\). This returns an idempotent \(e\) of \(A\) such that \(\pi(e)=\pi(x)\) and \(e\) is a polynomial in \(x\).
INPUT:
\(x\) – an element of \(A\) that projects on an idempotent \(\overline x\) of the semisimple quotient of \(A\). Alternatively one may give as input the idempotent \(\overline{x}\), in which case some lift thereof will be taken for \(x\).
OUTPUT: the idempotent \(e\) of
self
ALGORITHM:
Iterate the formula \(1 - (1 - x^2)^2\) until having an idempotent.
See [CR1962] for correctness and termination proofs.
EXAMPLES:
sage: # needs sage.graphs sage.modules sage: A = Algebras(QQ).FiniteDimensional().WithBasis().example() sage: S = A.semisimple_quotient() sage: A.idempotent_lift(S.basis()['x']) x sage: A.idempotent_lift(A.basis()['y']) y
>>> from sage.all import * >>> # needs sage.graphs sage.modules >>> A = Algebras(QQ).FiniteDimensional().WithBasis().example() >>> S = A.semisimple_quotient() >>> A.idempotent_lift(S.basis()['x']) x >>> A.idempotent_lift(A.basis()['y']) y
Todo
Add some non trivial example
- is_commutative()[source]#
Return whether
self
is a commutative algebra.EXAMPLES:
sage: # needs sage.groups sage.modules sage: S4 = SymmetricGroupAlgebra(QQ, 4) sage: S4.is_commutative() False sage: S2 = SymmetricGroupAlgebra(QQ, 2) sage: S2.is_commutative() True
>>> from sage.all import * >>> # needs sage.groups sage.modules >>> S4 = SymmetricGroupAlgebra(QQ, Integer(4)) >>> S4.is_commutative() False >>> S2 = SymmetricGroupAlgebra(QQ, Integer(2)) >>> S2.is_commutative() True
- is_identity_decomposition_into_orthogonal_idempotents(l)[source]#
Return whether
l
is a decomposition of the identity into orthogonal idempotents.INPUT:
l
– a list or iterable of elements ofself
EXAMPLES:
sage: # needs sage.graphs sage.modules sage: A = FiniteDimensionalAlgebrasWithBasis(QQ).example(); A An example of a finite dimensional algebra with basis: the path algebra of the Kronecker quiver (containing the arrows a:x->y and b:x->y) over Rational Field sage: x,y,a,b = A.algebra_generators(); x,y,a,b (x, y, a, b) sage: A.is_identity_decomposition_into_orthogonal_idempotents([A.one()]) True sage: A.is_identity_decomposition_into_orthogonal_idempotents([x, y]) True sage: A.is_identity_decomposition_into_orthogonal_idempotents([x + a, y - a]) True
>>> from sage.all import * >>> # needs sage.graphs sage.modules >>> A = FiniteDimensionalAlgebrasWithBasis(QQ).example(); A An example of a finite dimensional algebra with basis: the path algebra of the Kronecker quiver (containing the arrows a:x->y and b:x->y) over Rational Field >>> x,y,a,b = A.algebra_generators(); x,y,a,b (x, y, a, b) >>> A.is_identity_decomposition_into_orthogonal_idempotents([A.one()]) True >>> A.is_identity_decomposition_into_orthogonal_idempotents([x, y]) True >>> A.is_identity_decomposition_into_orthogonal_idempotents([x + a, y - a]) True
Here the idempotents do not sum up to \(1\):
sage: A.is_identity_decomposition_into_orthogonal_idempotents([x]) # needs sage.graphs sage.modules False
>>> from sage.all import * >>> A.is_identity_decomposition_into_orthogonal_idempotents([x]) # needs sage.graphs sage.modules False
Here \(1+x\) and \(-x\) are neither idempotent nor orthogonal:
sage: A.is_identity_decomposition_into_orthogonal_idempotents([1 + x, -x]) # needs sage.graphs sage.modules False
>>> from sage.all import * >>> A.is_identity_decomposition_into_orthogonal_idempotents([Integer(1) + x, -x]) # needs sage.graphs sage.modules False
With the algebra of the \(0\)-Hecke monoid:
sage: # needs sage.combinat sage.groups sage.modules sage.rings.number_field sage: from sage.monoids.hecke_monoid import HeckeMonoid sage: A = HeckeMonoid(SymmetricGroup(4)).algebra(QQ) sage: idempotents = A.orthogonal_idempotents_central_mod_radical() sage: A.is_identity_decomposition_into_orthogonal_idempotents(idempotents) True
>>> from sage.all import * >>> # needs sage.combinat sage.groups sage.modules sage.rings.number_field >>> from sage.monoids.hecke_monoid import HeckeMonoid >>> A = HeckeMonoid(SymmetricGroup(Integer(4))).algebra(QQ) >>> idempotents = A.orthogonal_idempotents_central_mod_radical() >>> A.is_identity_decomposition_into_orthogonal_idempotents(idempotents) True
Here are some more counterexamples:
Some orthogonal elements summing to \(1\) but not being idempotent:
sage: # needs sage.libs.pari sage.modules sage: class PQAlgebra(CombinatorialFreeModule): ....: def __init__(self, F, p): ....: # Construct the quotient algebra F[x] / p, ....: # where p is a univariate polynomial. ....: R = parent(p); x = R.gen() ....: I = R.ideal(p) ....: self._xbar = R.quotient(I).gen() ....: basis_keys = [self._xbar**i for i in range(p.degree())] ....: CombinatorialFreeModule.__init__(self, F, basis_keys, ....: category=Algebras(F).FiniteDimensional().WithBasis()) ....: def x(self): ....: return self(self._xbar) ....: def one(self): ....: return self.basis()[self.base_ring().one()] ....: def product_on_basis(self, w1, w2): ....: return self.from_vector(vector(w1*w2)) sage: R.<x> = PolynomialRing(QQ) sage: A = PQAlgebra(QQ, x**3 - x**2 + x + 1); y = A.x() sage: a, b = y, 1 - y sage: A.is_identity_decomposition_into_orthogonal_idempotents((a, b)) False
>>> from sage.all import * >>> # needs sage.libs.pari sage.modules >>> class PQAlgebra(CombinatorialFreeModule): ... def __init__(self, F, p): ... # Construct the quotient algebra F[x] / p, ... # where p is a univariate polynomial. ... R = parent(p); x = R.gen() ... I = R.ideal(p) ... self._xbar = R.quotient(I).gen() ... basis_keys = [self._xbar**i for i in range(p.degree())] ... CombinatorialFreeModule.__init__(self, F, basis_keys, ... category=Algebras(F).FiniteDimensional().WithBasis()) ... def x(self): ... return self(self._xbar) ... def one(self): ... return self.basis()[self.base_ring().one()] ... def product_on_basis(self, w1, w2): ... return self.from_vector(vector(w1*w2)) >>> R = PolynomialRing(QQ, names=('x',)); (x,) = R._first_ngens(1) >>> A = PQAlgebra(QQ, x**Integer(3) - x**Integer(2) + x + Integer(1)); y = A.x() >>> a, b = y, Integer(1) - y >>> A.is_identity_decomposition_into_orthogonal_idempotents((a, b)) False
For comparison:
sage: # needs sage.libs.pari sage.modules sage: A = PQAlgebra(QQ, x**2 - x); y = A.x() sage: a, b = y, 1-y sage: A.is_identity_decomposition_into_orthogonal_idempotents((a, b)) True sage: A.is_identity_decomposition_into_orthogonal_idempotents((a, A.zero(), b)) True sage: A = PQAlgebra(QQ, x**3 - x**2 + x - 1); y = A.x() sage: a = (y**2 + 1) / 2 sage: b = 1 - a sage: A.is_identity_decomposition_into_orthogonal_idempotents((a, b)) True
>>> from sage.all import * >>> # needs sage.libs.pari sage.modules >>> A = PQAlgebra(QQ, x**Integer(2) - x); y = A.x() >>> a, b = y, Integer(1)-y >>> A.is_identity_decomposition_into_orthogonal_idempotents((a, b)) True >>> A.is_identity_decomposition_into_orthogonal_idempotents((a, A.zero(), b)) True >>> A = PQAlgebra(QQ, x**Integer(3) - x**Integer(2) + x - Integer(1)); y = A.x() >>> a = (y**Integer(2) + Integer(1)) / Integer(2) >>> b = Integer(1) - a >>> A.is_identity_decomposition_into_orthogonal_idempotents((a, b)) True
Some idempotents summing to 1 but not orthogonal:
sage: # needs sage.libs.pari sage.modules sage: R.<x> = PolynomialRing(GF(2)) sage: A = PQAlgebra(GF(2), x) sage: a = A.one() sage: A.is_identity_decomposition_into_orthogonal_idempotents((a,)) True sage: A.is_identity_decomposition_into_orthogonal_idempotents((a, a, a)) False
>>> from sage.all import * >>> # needs sage.libs.pari sage.modules >>> R = PolynomialRing(GF(Integer(2)), names=('x',)); (x,) = R._first_ngens(1) >>> A = PQAlgebra(GF(Integer(2)), x) >>> a = A.one() >>> A.is_identity_decomposition_into_orthogonal_idempotents((a,)) True >>> A.is_identity_decomposition_into_orthogonal_idempotents((a, a, a)) False
Some orthogonal idempotents not summing to the identity:
sage: # needs sage.libs.pari sage.modules sage: A.is_identity_decomposition_into_orthogonal_idempotents((a,a)) False sage: A.is_identity_decomposition_into_orthogonal_idempotents(()) False
>>> from sage.all import * >>> # needs sage.libs.pari sage.modules >>> A.is_identity_decomposition_into_orthogonal_idempotents((a,a)) False >>> A.is_identity_decomposition_into_orthogonal_idempotents(()) False
- isotypic_projective_modules(side='left')[source]#
Return the isotypic projective
side
self
-modules.Let \(P_i\) be representatives of the indecomposable projective
side
-modules of this finite dimensional algebra \(A\), and \(S_i\) be the associated simple modules.The regular
side
representation of \(A\) can be decomposed as a direct sum \(A = \bigoplus_i Q_i\) where each \(Q_i\) is an isotypic projective module; namely \(Q_i\) is the direct sum of \(\dim S_i\) copies of the indecomposable projective module \(P_i\). This decomposition is not unique.The isotypic projective modules are constructed as \(Q_i=e_iA\), where the \((e_i)_i\) is the decomposition of the identity into orthogonal idempotents obtained by lifting the central orthogonal idempotents of the semisimple quotient of \(A\).
INPUT:
side
– ‘left’ or ‘right’ (default: ‘left’)
OUTPUT: a list of subspaces of
self
.EXAMPLES:
sage: # needs sage.graphs sage.modules sage.rings.number_field sage: A = Algebras(QQ).FiniteDimensional().WithBasis().example(); A An example of a finite dimensional algebra with basis: the path algebra of the Kronecker quiver (containing the arrows a:x->y and b:x->y) over Rational Field sage: Q = A.isotypic_projective_modules(side="left"); Q [Free module generated by {0} over Rational Field, Free module generated by {0, 1, 2} over Rational Field] sage: [[x.lift() for x in Qi.basis()] ....: for Qi in Q] [[x], [y, a, b]]
>>> from sage.all import * >>> # needs sage.graphs sage.modules sage.rings.number_field >>> A = Algebras(QQ).FiniteDimensional().WithBasis().example(); A An example of a finite dimensional algebra with basis: the path algebra of the Kronecker quiver (containing the arrows a:x->y and b:x->y) over Rational Field >>> Q = A.isotypic_projective_modules(side="left"); Q [Free module generated by {0} over Rational Field, Free module generated by {0, 1, 2} over Rational Field] >>> [[x.lift() for x in Qi.basis()] ... for Qi in Q] [[x], [y, a, b]]
We check that the sum of the dimensions of the isotypic projective modules is the dimension of
self
:sage: sum([Qi.dimension() for Qi in Q]) == A.dimension() # needs sage.graphs sage.modules sage.rings.number_field True
>>> from sage.all import * >>> sum([Qi.dimension() for Qi in Q]) == A.dimension() # needs sage.graphs sage.modules sage.rings.number_field True
- orthogonal_idempotents_central_mod_radical()[source]#
Return a family of orthogonal idempotents of
self
that project on the central orthogonal idempotents of the semisimple quotient.OUTPUT:
a list of orthogonal idempotents obtained by lifting the central orthogonal idempotents of the semisimple quotient.
ALGORITHM:
The orthogonal idempotents of \(A\) are obtained by lifting the central orthogonal idempotents of the semisimple quotient \(\overline{A}\).
Namely, let \((\overline{f_i})\) be the central orthogonal idempotents of the semisimple quotient of \(A\). We recursively construct orthogonal idempotents of \(A\) by the following procedure: assuming \((f_i)_{i < n}\) is a set of already constructed orthogonal idempotent, we construct \(f_k\) by idempotent lifting of \((1-f) g (1-f)\), where \(g\) is any lift of \(\overline{e_k}\) and \(f=\sum_{i<k} f_i\).
See [CR1962] for correctness and termination proofs.
See also
Algebras.SemiSimple.FiniteDimensional.WithBasis.ParentMethods.central_orthogonal_idempotents()
EXAMPLES:
sage: # needs sage.graphs sage.modules sage: A = Algebras(QQ).FiniteDimensional().WithBasis().example(); A An example of a finite dimensional algebra with basis: the path algebra of the Kronecker quiver (containing the arrows a:x->y and b:x->y) over Rational Field sage: A.orthogonal_idempotents_central_mod_radical() # needs sage.rings.number_field (x, y)
>>> from sage.all import * >>> # needs sage.graphs sage.modules >>> A = Algebras(QQ).FiniteDimensional().WithBasis().example(); A An example of a finite dimensional algebra with basis: the path algebra of the Kronecker quiver (containing the arrows a:x->y and b:x->y) over Rational Field >>> A.orthogonal_idempotents_central_mod_radical() # needs sage.rings.number_field (x, y)
sage: # needs sage.modules sage.rings.number_field sage: Z12 = Monoids().Finite().example(); Z12 An example of a finite multiplicative monoid: the integers modulo 12 sage: A = Z12.algebra(QQ) sage: idempotents = A.orthogonal_idempotents_central_mod_radical() sage: sorted(idempotents, key=str) [-B[0] + 1/2*B[4] + 1/2*B[8], 1/2*B[4] - 1/2*B[8], 1/2*B[9] + 1/2*B[3] - B[0], 1/2*B[9] - 1/2*B[3], 1/4*B[1] + 1/4*B[11] - 1/4*B[5] - 1/4*B[7], 1/4*B[1] - 1/2*B[9] + 1/4*B[5] - 1/4*B[7] + 1/2*B[3] - 1/4*B[11], 1/4*B[1] - 1/2*B[9] - 1/2*B[3] + 1/4*B[11] + 1/4*B[5] + 1/4*B[7] + B[0] - 1/2*B[4] - 1/2*B[8], 1/4*B[1] - 1/4*B[5] + 1/4*B[7] - 1/4*B[11] - 1/2*B[4] + 1/2*B[8], B[0]] sage: sum(idempotents) == 1 True sage: all(e*e == e for e in idempotents) True sage: all(e*f == 0 and f*e == 0 ....: for e in idempotents for f in idempotents if e != f) True
>>> from sage.all import * >>> # needs sage.modules sage.rings.number_field >>> Z12 = Monoids().Finite().example(); Z12 An example of a finite multiplicative monoid: the integers modulo 12 >>> A = Z12.algebra(QQ) >>> idempotents = A.orthogonal_idempotents_central_mod_radical() >>> sorted(idempotents, key=str) [-B[0] + 1/2*B[4] + 1/2*B[8], 1/2*B[4] - 1/2*B[8], 1/2*B[9] + 1/2*B[3] - B[0], 1/2*B[9] - 1/2*B[3], 1/4*B[1] + 1/4*B[11] - 1/4*B[5] - 1/4*B[7], 1/4*B[1] - 1/2*B[9] + 1/4*B[5] - 1/4*B[7] + 1/2*B[3] - 1/4*B[11], 1/4*B[1] - 1/2*B[9] - 1/2*B[3] + 1/4*B[11] + 1/4*B[5] + 1/4*B[7] + B[0] - 1/2*B[4] - 1/2*B[8], 1/4*B[1] - 1/4*B[5] + 1/4*B[7] - 1/4*B[11] - 1/2*B[4] + 1/2*B[8], B[0]] >>> sum(idempotents) == Integer(1) True >>> all(e*e == e for e in idempotents) True >>> all(e*f == Integer(0) and f*e == Integer(0) ... for e in idempotents for f in idempotents if e != f) True
This is best tested with:
sage: A.is_identity_decomposition_into_orthogonal_idempotents(idempotents) # needs sage.graphs sage.modules sage.rings.number_field True
>>> from sage.all import * >>> A.is_identity_decomposition_into_orthogonal_idempotents(idempotents) # needs sage.graphs sage.modules sage.rings.number_field True
We construct orthogonal idempotents for the algebra of the \(0\)-Hecke monoid:
sage: # needs sage.combinat sage.graphs sage.groups sage.modules sage: from sage.monoids.hecke_monoid import HeckeMonoid sage: A = HeckeMonoid(SymmetricGroup(4)).algebra(QQ) sage: idempotents = A.orthogonal_idempotents_central_mod_radical() sage: A.is_identity_decomposition_into_orthogonal_idempotents(idempotents) True
>>> from sage.all import * >>> # needs sage.combinat sage.graphs sage.groups sage.modules >>> from sage.monoids.hecke_monoid import HeckeMonoid >>> A = HeckeMonoid(SymmetricGroup(Integer(4))).algebra(QQ) >>> idempotents = A.orthogonal_idempotents_central_mod_radical() >>> A.is_identity_decomposition_into_orthogonal_idempotents(idempotents) True
- peirce_decomposition(idempotents=None, check=True)[source]#
Return a Peirce decomposition of
self
.Let \((e_i)_i\) be a collection of orthogonal idempotents of \(A\) with sum \(1\). The Peirce decomposition of \(A\) is the decomposition of \(A\) into the direct sum of the subspaces \(e_i A e_j\).
With the default collection of orthogonal idempotents, one has
\[\dim e_i A e_j = C_{i,j} \dim S_i \dim S_j\]where \((S_i)_i\) are the simple modules of \(A\) and \((C_{i,j})_{i, j}\) is the Cartan invariants matrix.
INPUT:
idempotents
– a list of orthogonal idempotents \((e_i)_{i=0,\ldots,n}\) of the algebra that sum to \(1\) (default: the idempotents returned byorthogonal_idempotents_central_mod_radical()
)check
– (default:True
) whether to check that the idempotents are indeed orthogonal and idempotent and sum to \(1\)
OUTPUT:
A list of lists \(l\) such that
l[i][j]
is the subspace \(e_i A e_j\).EXAMPLES:
sage: # needs sage.graphs sage.groups sage.modules sage.rings.number_field sage: A = Algebras(QQ).FiniteDimensional().WithBasis().example(); A An example of a finite dimensional algebra with basis: the path algebra of the Kronecker quiver (containing the arrows a:x->y and b:x->y) over Rational Field sage: A.orthogonal_idempotents_central_mod_radical() (x, y) sage: decomposition = A.peirce_decomposition(); decomposition [[Free module generated by {0} over Rational Field, Free module generated by {0, 1} over Rational Field], [Free module generated by {} over Rational Field, Free module generated by {0} over Rational Field]] sage: [ [[x.lift() for x in decomposition[i][j].basis()] ....: for j in range(2)] ....: for i in range(2)] [[[x], [a, b]], [[], [y]]]
>>> from sage.all import * >>> # needs sage.graphs sage.groups sage.modules sage.rings.number_field >>> A = Algebras(QQ).FiniteDimensional().WithBasis().example(); A An example of a finite dimensional algebra with basis: the path algebra of the Kronecker quiver (containing the arrows a:x->y and b:x->y) over Rational Field >>> A.orthogonal_idempotents_central_mod_radical() (x, y) >>> decomposition = A.peirce_decomposition(); decomposition [[Free module generated by {0} over Rational Field, Free module generated by {0, 1} over Rational Field], [Free module generated by {} over Rational Field, Free module generated by {0} over Rational Field]] >>> [ [[x.lift() for x in decomposition[i][j].basis()] ... for j in range(Integer(2))] ... for i in range(Integer(2))] [[[x], [a, b]], [[], [y]]]
We recover that the group algebra of the symmetric group \(S_4\) is a block matrix algebra:
sage: # needs sage.groups sage.modules sage.rings.number_field sage: A = SymmetricGroup(4).algebra(QQ) sage: decomposition = A.peirce_decomposition() # long time sage: [[decomposition[i][j].dimension() # long time (4s) ....: for j in range(len(decomposition))] ....: for i in range(len(decomposition))] [[9, 0, 0, 0, 0], [0, 9, 0, 0, 0], [0, 0, 4, 0, 0], [0, 0, 0, 1, 0], [0, 0, 0, 0, 1]]
>>> from sage.all import * >>> # needs sage.groups sage.modules sage.rings.number_field >>> A = SymmetricGroup(Integer(4)).algebra(QQ) >>> decomposition = A.peirce_decomposition() # long time >>> [[decomposition[i][j].dimension() # long time (4s) ... for j in range(len(decomposition))] ... for i in range(len(decomposition))] [[9, 0, 0, 0, 0], [0, 9, 0, 0, 0], [0, 0, 4, 0, 0], [0, 0, 0, 1, 0], [0, 0, 0, 0, 1]]
The dimension of each block is \(d^2\), where \(d\) is the dimension of the corresponding simple module of \(S_4\). The latter are given by:
sage: [p.standard_tableaux().cardinality() for p in Partitions(4)] # needs sage.combinat [1, 3, 2, 3, 1]
>>> from sage.all import * >>> [p.standard_tableaux().cardinality() for p in Partitions(Integer(4))] # needs sage.combinat [1, 3, 2, 3, 1]
- peirce_summand(ei, ej)[source]#
Return the Peirce decomposition summand \(e_i A e_j\).
INPUT:
self
– an algebra \(A\)ei
,ej
– two idempotents of \(A\)
OUTPUT: \(e_i A e_j\), as a subspace of \(A\).
See also
EXAMPLES:
sage: A = Algebras(QQ).FiniteDimensional().WithBasis().example() sage: idemp = A.orthogonal_idempotents_central_mod_radical() # needs sage.rings.number_field sage: A.peirce_summand(idemp[0], idemp[1]) # needs sage.rings.number_field Free module generated by {0, 1} over Rational Field sage: A.peirce_summand(idemp[1], idemp[0]) # needs sage.rings.number_field Free module generated by {} over Rational Field
>>> from sage.all import * >>> A = Algebras(QQ).FiniteDimensional().WithBasis().example() >>> idemp = A.orthogonal_idempotents_central_mod_radical() # needs sage.rings.number_field >>> A.peirce_summand(idemp[Integer(0)], idemp[Integer(1)]) # needs sage.rings.number_field Free module generated by {0, 1} over Rational Field >>> A.peirce_summand(idemp[Integer(1)], idemp[Integer(0)]) # needs sage.rings.number_field Free module generated by {} over Rational Field
We recover the \(2\times2\) block of \(\QQ[S_4]\) corresponding to the unique simple module of dimension \(2\) of the symmetric group \(S_4\):
sage: # needs sage.combinat sage.groups sage.rings.number_field sage: A4 = SymmetricGroup(4).algebra(QQ) sage: e = A4.central_orthogonal_idempotents()[2] sage: A4.peirce_summand(e, e) Free module generated by {0, 1, 2, 3} over Rational Field
>>> from sage.all import * >>> # needs sage.combinat sage.groups sage.rings.number_field >>> A4 = SymmetricGroup(Integer(4)).algebra(QQ) >>> e = A4.central_orthogonal_idempotents()[Integer(2)] >>> A4.peirce_summand(e, e) Free module generated by {0, 1, 2, 3} over Rational Field
- principal_ideal(a, side='left', *args, **opts)[source]#
Construct the
side
principal ideal generated bya
.EXAMPLES:
In order to highlight the difference between left and right principal ideals, our first example deals with a non commutative algebra:
sage: # needs sage.graphs sage.modules sage: A = Algebras(QQ).FiniteDimensional().WithBasis().example(); A An example of a finite dimensional algebra with basis: the path algebra of the Kronecker quiver (containing the arrows a:x->y and b:x->y) over Rational Field sage: x, y, a, b = A.basis()
>>> from sage.all import * >>> # needs sage.graphs sage.modules >>> A = Algebras(QQ).FiniteDimensional().WithBasis().example(); A An example of a finite dimensional algebra with basis: the path algebra of the Kronecker quiver (containing the arrows a:x->y and b:x->y) over Rational Field >>> x, y, a, b = A.basis()
In this algebra, multiplication on the right by \(x\) annihilates all basis elements but \(x\):
sage: x*x, y*x, a*x, b*x # needs sage.graphs sage.modules (x, 0, 0, 0)
>>> from sage.all import * >>> x*x, y*x, a*x, b*x # needs sage.graphs sage.modules (x, 0, 0, 0)
so the left ideal generated by \(x\) is one-dimensional:
sage: Ax = A.principal_ideal(x, side='left'); Ax # needs sage.graphs sage.modules Free module generated by {0} over Rational Field sage: [B.lift() for B in Ax.basis()] # needs sage.graphs sage.modules [x]
>>> from sage.all import * >>> Ax = A.principal_ideal(x, side='left'); Ax # needs sage.graphs sage.modules Free module generated by {0} over Rational Field >>> [B.lift() for B in Ax.basis()] # needs sage.graphs sage.modules [x]
Multiplication on the left by \(x\) annihilates only \(x\) and fixes the other basis elements:
sage: x*x, x*y, x*a, x*b # needs sage.graphs sage.modules (x, 0, a, b)
>>> from sage.all import * >>> x*x, x*y, x*a, x*b # needs sage.graphs sage.modules (x, 0, a, b)
so the right ideal generated by \(x\) is 3-dimensional:
sage: xA = A.principal_ideal(x, side='right'); xA # needs sage.graphs sage.modules Free module generated by {0, 1, 2} over Rational Field sage: [B.lift() for B in xA.basis()] # needs sage.graphs sage.modules [x, a, b]
>>> from sage.all import * >>> xA = A.principal_ideal(x, side='right'); xA # needs sage.graphs sage.modules Free module generated by {0, 1, 2} over Rational Field >>> [B.lift() for B in xA.basis()] # needs sage.graphs sage.modules [x, a, b]
See also
- radical()[source]#
Return the Jacobson radical of
self
.This uses
radical_basis()
, whose default implementation handles algebras over fields of characteristic zero or fields of characteristic \(p\) in which we can compute \(x^{1/p}\).See also
EXAMPLES:
sage: # needs sage.graphs sage.modules sage: A = Algebras(QQ).FiniteDimensional().WithBasis().example(); A An example of a finite dimensional algebra with basis: the path algebra of the Kronecker quiver (containing the arrows a:x->y and b:x->y) over Rational Field sage: radical = A.radical(); radical Radical of An example of a finite dimensional algebra with basis: the path algebra of the Kronecker quiver (containing the arrows a:x->y and b:x->y) over Rational Field
>>> from sage.all import * >>> # needs sage.graphs sage.modules >>> A = Algebras(QQ).FiniteDimensional().WithBasis().example(); A An example of a finite dimensional algebra with basis: the path algebra of the Kronecker quiver (containing the arrows a:x->y and b:x->y) over Rational Field >>> radical = A.radical(); radical Radical of An example of a finite dimensional algebra with basis: the path algebra of the Kronecker quiver (containing the arrows a:x->y and b:x->y) over Rational Field
The radical is an ideal of \(A\), and thus a finite dimensional non unital associative algebra:
sage: # needs sage.graphs sage.modules sage: from sage.categories.associative_algebras import AssociativeAlgebras sage: radical in AssociativeAlgebras(QQ).WithBasis().FiniteDimensional() True sage: radical in Algebras(QQ) False sage: # needs sage.graphs sage.modules sage: radical.dimension() 2 sage: radical.basis() Finite family {0: B[0], 1: B[1]} sage: radical.ambient() is A True sage: [c.lift() for c in radical.basis()] [a, b]
>>> from sage.all import * >>> # needs sage.graphs sage.modules >>> from sage.categories.associative_algebras import AssociativeAlgebras >>> radical in AssociativeAlgebras(QQ).WithBasis().FiniteDimensional() True >>> radical in Algebras(QQ) False >>> # needs sage.graphs sage.modules >>> radical.dimension() 2 >>> radical.basis() Finite family {0: B[0], 1: B[1]} >>> radical.ambient() is A True >>> [c.lift() for c in radical.basis()] [a, b]
Todo
Tell Sage that the radical is in fact an ideal;
Pickling by construction, as
A.center()
;Lazy evaluation of
_repr_
.
- radical_basis()[source]#
Return a basis of the Jacobson radical of this algebra.
Note
This implementation handles algebras over fields of characteristic zero (using Dixon’s lemma) or fields of characteristic \(p\) in which we can compute \(x^{1/p}\) [FR1985], [Eb1989].
OUTPUT:
a list of elements of
self
.
See also
EXAMPLES:
sage: # needs sage.graphs sage.modules sage: A = Algebras(QQ).FiniteDimensional().WithBasis().example(); A An example of a finite dimensional algebra with basis: the path algebra of the Kronecker quiver (containing the arrows a:x->y and b:x->y) over Rational Field sage: A.radical_basis() (a, b)
>>> from sage.all import * >>> # needs sage.graphs sage.modules >>> A = Algebras(QQ).FiniteDimensional().WithBasis().example(); A An example of a finite dimensional algebra with basis: the path algebra of the Kronecker quiver (containing the arrows a:x->y and b:x->y) over Rational Field >>> A.radical_basis() (a, b)
We construct the group algebra of the Klein Four-Group over the rationals:
sage: A = KleinFourGroup().algebra(QQ) # needs sage.groups sage.modules
>>> from sage.all import * >>> A = KleinFourGroup().algebra(QQ) # needs sage.groups sage.modules
This algebra belongs to the category of finite dimensional algebras over the rationals:
sage: A in Algebras(QQ).FiniteDimensional().WithBasis() # needs sage.groups sage.modules True
>>> from sage.all import * >>> A in Algebras(QQ).FiniteDimensional().WithBasis() # needs sage.groups sage.modules True
Since the field has characteristic \(0\), Maschke’s Theorem tells us that the group algebra is semisimple. So its radical is the zero ideal:
sage: A in Algebras(QQ).Semisimple() # needs sage.groups sage.modules True sage: A.radical_basis() # needs sage.groups sage.modules ()
>>> from sage.all import * >>> A in Algebras(QQ).Semisimple() # needs sage.groups sage.modules True >>> A.radical_basis() # needs sage.groups sage.modules ()
Let’s work instead over a field of characteristic \(2\):
sage: A = KleinFourGroup().algebra(GF(2)) # needs sage.groups sage.modules sage: A in Algebras(GF(2)).Semisimple() # needs sage.groups sage.modules False sage: A.radical_basis() # needs sage.groups sage.modules (() + (1,2)(3,4), (3,4) + (1,2)(3,4), (1,2) + (1,2)(3,4))
>>> from sage.all import * >>> A = KleinFourGroup().algebra(GF(Integer(2))) # needs sage.groups sage.modules >>> A in Algebras(GF(Integer(2))).Semisimple() # needs sage.groups sage.modules False >>> A.radical_basis() # needs sage.groups sage.modules (() + (1,2)(3,4), (3,4) + (1,2)(3,4), (1,2) + (1,2)(3,4))
We now implement the algebra \(A = K[x] / (x^p-1)\), where \(K\) is a finite field of characteristic \(p\), and check its radical; alas, we currently need to wrap \(A\) to make it a proper
ModulesWithBasis
:sage: # needs sage.modules sage: class AnAlgebra(CombinatorialFreeModule): ....: def __init__(self, F): ....: R.<x> = PolynomialRing(F) ....: I = R.ideal(x**F.characteristic()-F.one()) ....: self._xbar = R.quotient(I).gen() ....: basis_keys = [self._xbar**i for i in range(F.characteristic())] ....: CombinatorialFreeModule.__init__(self, F, basis_keys, ....: category=Algebras(F).FiniteDimensional().WithBasis()) ....: def one(self): ....: return self.basis()[self.base_ring().one()] ....: def product_on_basis(self, w1, w2): ....: return self.from_vector(vector(w1*w2)) sage: AnAlgebra(GF(3)).radical_basis() # needs sage.libs.pari (B[1] + 2*B[xbar^2], B[xbar] + 2*B[xbar^2]) sage: AnAlgebra(GF(16,'a')).radical_basis() # needs sage.rings.finite_rings (B[1] + B[xbar],) sage: AnAlgebra(GF(49,'a')).radical_basis() # needs sage.rings.finite_rings (B[1] + 6*B[xbar^6], B[xbar] + 6*B[xbar^6], B[xbar^2] + 6*B[xbar^6], B[xbar^3] + 6*B[xbar^6], B[xbar^4] + 6*B[xbar^6], B[xbar^5] + 6*B[xbar^6])
>>> from sage.all import * >>> # needs sage.modules >>> class AnAlgebra(CombinatorialFreeModule): ... def __init__(self, F): ... R = PolynomialRing(F, names=('x',)); (x,) = R._first_ngens(1) ... I = R.ideal(x**F.characteristic()-F.one()) ... self._xbar = R.quotient(I).gen() ... basis_keys = [self._xbar**i for i in range(F.characteristic())] ... CombinatorialFreeModule.__init__(self, F, basis_keys, ... category=Algebras(F).FiniteDimensional().WithBasis()) ... def one(self): ... return self.basis()[self.base_ring().one()] ... def product_on_basis(self, w1, w2): ... return self.from_vector(vector(w1*w2)) >>> AnAlgebra(GF(Integer(3))).radical_basis() # needs sage.libs.pari (B[1] + 2*B[xbar^2], B[xbar] + 2*B[xbar^2]) >>> AnAlgebra(GF(Integer(16),'a')).radical_basis() # needs sage.rings.finite_rings (B[1] + B[xbar],) >>> AnAlgebra(GF(Integer(49),'a')).radical_basis() # needs sage.rings.finite_rings (B[1] + 6*B[xbar^6], B[xbar] + 6*B[xbar^6], B[xbar^2] + 6*B[xbar^6], B[xbar^3] + 6*B[xbar^6], B[xbar^4] + 6*B[xbar^6], B[xbar^5] + 6*B[xbar^6])
We compute the radical basis in a subalgebra using the inherited product:
sage: scoeffs = {('a','e'): {'a':1}, ('b','e'): {'a':1, 'b':1}, ....: ('c','d'): {'a':1}, ('c','e'): {'c':1}} sage: L.<a,b,c,d,e> = LieAlgebra(QQ, scoeffs) sage: MS = MatrixSpace(QQ, 5) sage: A = MS.subalgebra([bg.adjoint_matrix() for bg in L.lie_algebra_generators()]) sage: A.radical_basis() (B[1], B[2], B[3], B[4], B[5])
>>> from sage.all import * >>> scoeffs = {('a','e'): {'a':Integer(1)}, ('b','e'): {'a':Integer(1), 'b':Integer(1)}, ... ('c','d'): {'a':Integer(1)}, ('c','e'): {'c':Integer(1)}} >>> L = LieAlgebra(QQ, scoeffs, names=('a', 'b', 'c', 'd', 'e',)); (a, b, c, d, e,) = L._first_ngens(5) >>> MS = MatrixSpace(QQ, Integer(5)) >>> A = MS.subalgebra([bg.adjoint_matrix() for bg in L.lie_algebra_generators()]) >>> A.radical_basis() (B[1], B[2], B[3], B[4], B[5])
- semisimple_quotient()[source]#
Return the semisimple quotient of
self
.This is the quotient of
self
by its radical.See also
EXAMPLES:
sage: # needs sage.graphs sage.modules sage: A = Algebras(QQ).FiniteDimensional().WithBasis().example(); A An example of a finite dimensional algebra with basis: the path algebra of the Kronecker quiver (containing the arrows a:x->y and b:x->y) over Rational Field sage: a,b,x,y = sorted(A.basis()) sage: S = A.semisimple_quotient(); S Semisimple quotient of An example of a finite dimensional algebra with basis: the path algebra of the Kronecker quiver (containing the arrows a:x->y and b:x->y) over Rational Field sage: S in Algebras(QQ).Semisimple() True sage: S.basis() Finite family {'x': B['x'], 'y': B['y']} sage: xs,ys = sorted(S.basis()) sage: (xs + ys) * xs B['x']
>>> from sage.all import * >>> # needs sage.graphs sage.modules >>> A = Algebras(QQ).FiniteDimensional().WithBasis().example(); A An example of a finite dimensional algebra with basis: the path algebra of the Kronecker quiver (containing the arrows a:x->y and b:x->y) over Rational Field >>> a,b,x,y = sorted(A.basis()) >>> S = A.semisimple_quotient(); S Semisimple quotient of An example of a finite dimensional algebra with basis: the path algebra of the Kronecker quiver (containing the arrows a:x->y and b:x->y) over Rational Field >>> S in Algebras(QQ).Semisimple() True >>> S.basis() Finite family {'x': B['x'], 'y': B['y']} >>> xs,ys = sorted(S.basis()) >>> (xs + ys) * xs B['x']
Sanity check: the semisimple quotient of the \(n\)-th descent algebra of the symmetric group is of dimension the number of partitions of \(n\):
sage: [ DescentAlgebra(QQ,n).B().semisimple_quotient().dimension() # needs sage.combinat sage.groups sage.modules ....: for n in range(6) ] [1, 1, 2, 3, 5, 7] sage: [Partitions(n).cardinality() for n in range(10)] # needs sage.combinat [1, 1, 2, 3, 5, 7, 11, 15, 22, 30]
>>> from sage.all import * >>> [ DescentAlgebra(QQ,n).B().semisimple_quotient().dimension() # needs sage.combinat sage.groups sage.modules ... for n in range(Integer(6)) ] [1, 1, 2, 3, 5, 7] >>> [Partitions(n).cardinality() for n in range(Integer(10))] # needs sage.combinat [1, 1, 2, 3, 5, 7, 11, 15, 22, 30]
Todo
Pickling by construction, as
A.semisimple_quotient()
?Lazy evaluation of
_repr_
- subalgebra(gens, category=None, *args, **opts)[source]#
Return the subalgebra of
self
generated bygens
.EXAMPLES:
sage: scoeffs = {('a','e'): {'a':1}, ('b','e'): {'a':1, 'b':1}, ....: ('c','d'): {'a':1}, ('c','e'): {'c':1}} sage: L.<a,b,c,d,e> = LieAlgebra(QQ, scoeffs) sage: MS = MatrixSpace(QQ, 5) sage: A = MS.subalgebra([bg.adjoint_matrix() for bg in L.lie_algebra_generators()]) sage: A.dimension() 7 sage: L.<x,y,z> = LieAlgebra(GF(3), {('x','z'): {'x':1, 'y':1}, ('y','z'): {'y':1}}) sage: MS = MatrixSpace(L.base_ring(), L.dimension()) sage: gens = [b.adjoint_matrix() for b in L.basis()] sage: A = MS.subalgebra(gens) sage: A.dimension() 5
>>> from sage.all import * >>> scoeffs = {('a','e'): {'a':Integer(1)}, ('b','e'): {'a':Integer(1), 'b':Integer(1)}, ... ('c','d'): {'a':Integer(1)}, ('c','e'): {'c':Integer(1)}} >>> L = LieAlgebra(QQ, scoeffs, names=('a', 'b', 'c', 'd', 'e',)); (a, b, c, d, e,) = L._first_ngens(5) >>> MS = MatrixSpace(QQ, Integer(5)) >>> A = MS.subalgebra([bg.adjoint_matrix() for bg in L.lie_algebra_generators()]) >>> A.dimension() 7 >>> L = LieAlgebra(GF(Integer(3)), {('x','z'): {'x':Integer(1), 'y':Integer(1)}, ('y','z'): {'y':Integer(1)}}, names=('x', 'y', 'z',)); (x, y, z,) = L._first_ngens(3) >>> MS = MatrixSpace(L.base_ring(), L.dimension()) >>> gens = [b.adjoint_matrix() for b in L.basis()] >>> A = MS.subalgebra(gens) >>> A.dimension() 5
- class SubcategoryMethods[source]#
Bases:
object
- Cellular()[source]#
Return the full subcategory of the cellular objects of
self
.See also
EXAMPLES:
sage: Algebras(QQ).FiniteDimensional().WithBasis().Cellular() Category of finite dimensional cellular algebras with basis over Rational Field
>>> from sage.all import * >>> Algebras(QQ).FiniteDimensional().WithBasis().Cellular() Category of finite dimensional cellular algebras with basis over Rational Field