Commutative additive groups¶
- class sage.categories.commutative_additive_groups.CommutativeAdditiveGroups(base_category)[source]¶
Bases:
CategoryWithAxiom_singleton
,AbelianCategory
The category of abelian groups, i.e. additive abelian monoids where each element has an inverse.
EXAMPLES:
sage: C = CommutativeAdditiveGroups(); C Category of commutative additive groups sage: C.super_categories() [Category of additive groups, Category of commutative additive monoids] sage: sorted(C.axioms()) ['AdditiveAssociative', 'AdditiveCommutative', 'AdditiveInverse', 'AdditiveUnital'] sage: C is CommutativeAdditiveMonoids().AdditiveInverse() True sage: from sage.categories.additive_groups import AdditiveGroups sage: C is AdditiveGroups().AdditiveCommutative() True
>>> from sage.all import * >>> C = CommutativeAdditiveGroups(); C Category of commutative additive groups >>> C.super_categories() [Category of additive groups, Category of commutative additive monoids] >>> sorted(C.axioms()) ['AdditiveAssociative', 'AdditiveCommutative', 'AdditiveInverse', 'AdditiveUnital'] >>> C is CommutativeAdditiveMonoids().AdditiveInverse() True >>> from sage.categories.additive_groups import AdditiveGroups >>> C is AdditiveGroups().AdditiveCommutative() True
Note
This category is currently empty. It’s left there for backward compatibility and because it is likely to grow in the future.
- class Algebras(category, *args)[source]¶
Bases:
AlgebrasCategory
- class CartesianProducts(category, *args)[source]¶
Bases:
CartesianProductsCategory
- class ElementMethods[source]¶
Bases:
object
- additive_order()[source]¶
Return the additive order of this element.
EXAMPLES:
sage: G = cartesian_product([Zmod(3), Zmod(6), Zmod(5)]) sage: G((1,1,1)).additive_order() 30 sage: any((i * G((1,1,1))).is_zero() for i in range(1,30)) False sage: 30 * G((1,1,1)) (0, 0, 0) sage: G = cartesian_product([ZZ, ZZ]) sage: G((0,0)).additive_order() 1 sage: G((0,1)).additive_order() +Infinity sage: # needs sage.rings.finite_rings sage: K = GF(9) sage: H = cartesian_product([ ....: cartesian_product([Zmod(2), Zmod(9)]), K]) sage: z = H(((1,2), K.gen())) sage: z.additive_order() 18
>>> from sage.all import * >>> G = cartesian_product([Zmod(Integer(3)), Zmod(Integer(6)), Zmod(Integer(5))]) >>> G((Integer(1),Integer(1),Integer(1))).additive_order() 30 >>> any((i * G((Integer(1),Integer(1),Integer(1)))).is_zero() for i in range(Integer(1),Integer(30))) False >>> Integer(30) * G((Integer(1),Integer(1),Integer(1))) (0, 0, 0) >>> G = cartesian_product([ZZ, ZZ]) >>> G((Integer(0),Integer(0))).additive_order() 1 >>> G((Integer(0),Integer(1))).additive_order() +Infinity >>> # needs sage.rings.finite_rings >>> K = GF(Integer(9)) >>> H = cartesian_product([ ... cartesian_product([Zmod(Integer(2)), Zmod(Integer(9))]), K]) >>> z = H(((Integer(1),Integer(2)), K.gen())) >>> z.additive_order() 18