Semisimple Algebras#
- class sage.categories.semisimple_algebras.SemisimpleAlgebras(base, name=None)#
Bases:
Category_over_base_ring
The category of semisimple algebras over a given base ring.
EXAMPLES:
sage: from sage.categories.semisimple_algebras import SemisimpleAlgebras sage: C = SemisimpleAlgebras(QQ); C Category of semisimple algebras over Rational Field
This category is best constructed as:
sage: D = Algebras(QQ).Semisimple(); D Category of semisimple algebras over Rational Field sage: D is C True sage: C.super_categories() [Category of algebras over Rational Field]
Typically, finite group algebras are semisimple:
sage: DihedralGroup(5).algebra(QQ) in SemisimpleAlgebras True
Unless the characteristic of the field divides the order of the group:
sage: DihedralGroup(5).algebra(IntegerModRing(5)) in SemisimpleAlgebras False sage: DihedralGroup(5).algebra(IntegerModRing(7)) in SemisimpleAlgebras True
See also
- class FiniteDimensional(base_category)#
Bases:
CategoryWithAxiom_over_base_ring
- WithBasis#
- class ParentMethods#
Bases:
object
- radical_basis(**keywords)#
Return a basis of the Jacobson radical of this algebra.
keywords
– for compatibility; ignored.
OUTPUT: the empty list since this algebra is semisimple.
EXAMPLES:
sage: A = SymmetricGroup(4).algebra(QQ) sage: A.radical_basis() ()
- super_categories()#
EXAMPLES:
sage: Algebras(QQ).Semisimple().super_categories() [Category of algebras over Rational Field]