Groups#
- class sage.categories.groups.Groups(base_category)[source]#
Bases:
CategoryWithAxiom_singleton
The category of (multiplicative) groups, i.e. monoids with inverses.
EXAMPLES:
sage: Groups() Category of groups sage: Groups().super_categories() [Category of monoids, Category of inverse unital magmas]
>>> from sage.all import * >>> Groups() Category of groups >>> Groups().super_categories() [Category of monoids, Category of inverse unital magmas]
- Algebras[source]#
alias of
GroupAlgebras
- class CartesianProducts(category, *args)[source]#
Bases:
CartesianProductsCategory
The category of groups constructed as Cartesian products of groups.
This construction gives the direct product of groups. See Wikipedia article Direct_product and Wikipedia article Direct_product_of_groups for more information.
- class ParentMethods[source]#
Bases:
object
- group_generators()[source]#
Return the group generators of
self
.EXAMPLES:
sage: # needs sage.groups sage: C5 = CyclicPermutationGroup(5) sage: C4 = CyclicPermutationGroup(4) sage: S4 = SymmetricGroup(3) sage: C = cartesian_product([C5, C4, S4]) sage: C.group_generators() Family (((1,2,3,4,5), (), ()), ((), (1,2,3,4), ()), ((), (), (1,2)), ((), (), (2,3)))
>>> from sage.all import * >>> # needs sage.groups >>> C5 = CyclicPermutationGroup(Integer(5)) >>> C4 = CyclicPermutationGroup(Integer(4)) >>> S4 = SymmetricGroup(Integer(3)) >>> C = cartesian_product([C5, C4, S4]) >>> C.group_generators() Family (((1,2,3,4,5), (), ()), ((), (1,2,3,4), ()), ((), (), (1,2)), ((), (), (2,3)))
We check the other portion of Issue #16718 is fixed:
sage: len(C.j_classes()) # needs sage.graphs sage.groups 1
>>> from sage.all import * >>> len(C.j_classes()) # needs sage.graphs sage.groups 1
An example with an infinitely generated group (a better output is needed):
sage: # needs sage.combinat sage.groups sage: G = Groups.free([1,2]) sage: H = Groups.free(ZZ) sage: C = cartesian_product([G, H]) sage: C.monoid_generators() Lazy family (gen(i))_{i in The Cartesian product of (...)}
>>> from sage.all import * >>> # needs sage.combinat sage.groups >>> G = Groups.free([Integer(1),Integer(2)]) >>> H = Groups.free(ZZ) >>> C = cartesian_product([G, H]) >>> C.monoid_generators() Lazy family (gen(i))_{i in The Cartesian product of (...)}
- order()[source]#
Return the cardinality of
self
.EXAMPLES:
sage: C = cartesian_product([SymmetricGroup(10), SL(2, GF(3))]) # needs sage.groups sage.modules sage: C.order() # needs sage.groups sage.modules 87091200
>>> from sage.all import * >>> C = cartesian_product([SymmetricGroup(Integer(10)), SL(Integer(2), GF(Integer(3)))]) # needs sage.groups sage.modules >>> C.order() # needs sage.groups sage.modules 87091200
Todo
this method is just here to prevent
FiniteGroups.ParentMethods
to call_cardinality_from_iterator
.
- extra_super_categories()[source]#
A Cartesian product of groups is endowed with a natural group structure.
EXAMPLES:
sage: C = Groups().CartesianProducts() sage: C.extra_super_categories() [Category of groups] sage: sorted(C.super_categories(), key=str) [Category of Cartesian products of inverse unital magmas, Category of Cartesian products of monoids, Category of groups]
>>> from sage.all import * >>> C = Groups().CartesianProducts() >>> C.extra_super_categories() [Category of groups] >>> sorted(C.super_categories(), key=str) [Category of Cartesian products of inverse unital magmas, Category of Cartesian products of monoids, Category of groups]
- class Commutative(base_category)[source]#
Bases:
CategoryWithAxiom
Category of commutative (abelian) groups.
A group \(G\) is commutative if \(xy = yx\) for all \(x,y \in G\).
- static free(index_set=None, names=None, **kwds)[source]#
Return the free commutative group.
INPUT:
index_set
– (optional) an index set for the generators; if an integer, then this represents \(\{0, 1, \ldots, n-1\}\)names
– a string or list/tuple/iterable of strings (default:'x'
); the generator names or name prefix
EXAMPLES:
sage: # needs sage.combinat sage.groups sage: Groups.Commutative.free(index_set=ZZ) Free abelian group indexed by Integer Ring sage: Groups().Commutative().free(ZZ) Free abelian group indexed by Integer Ring sage: Groups().Commutative().free(5) Multiplicative Abelian group isomorphic to Z x Z x Z x Z x Z sage: F.<x,y,z> = Groups().Commutative().free(); F Multiplicative Abelian group isomorphic to Z x Z x Z
>>> from sage.all import * >>> # needs sage.combinat sage.groups >>> Groups.Commutative.free(index_set=ZZ) Free abelian group indexed by Integer Ring >>> Groups().Commutative().free(ZZ) Free abelian group indexed by Integer Ring >>> Groups().Commutative().free(Integer(5)) Multiplicative Abelian group isomorphic to Z x Z x Z x Z x Z >>> F = Groups().Commutative().free(names=('x', 'y', 'z',)); (x, y, z,) = F._first_ngens(3); F Multiplicative Abelian group isomorphic to Z x Z x Z
- class ElementMethods[source]#
Bases:
object
- conjugacy_class()[source]#
Return the conjugacy class of
self
.EXAMPLES:
sage: D = DihedralGroup(5) # needs sage.groups sage: g = D((1,3,5,2,4)) # needs sage.groups sage: g.conjugacy_class() # needs sage.groups Conjugacy class of (1,3,5,2,4) in Dihedral group of order 10 as a permutation group sage: H = MatrixGroup([matrix(GF(5), 2, [1,2, -1,1]), # needs sage.modules ....: matrix(GF(5), 2, [1,1, 0,1])]) sage: h = H(matrix(GF(5), 2, [1,2, -1,1])) # needs sage.modules sage: h.conjugacy_class() # needs sage.groups sage.modules Conjugacy class of [1 2] [4 1] in Matrix group over Finite Field of size 5 with 2 generators ( [1 2] [1 1] [4 1], [0 1] ) sage: G = SL(2, GF(2)) # needs sage.modules sage: g = G.gens()[0] # needs sage.groups sage.modules sage: g.conjugacy_class() # needs sage.groups sage.modules Conjugacy class of [1 1] [0 1] in Special Linear Group of degree 2 over Finite Field of size 2 sage: G = SL(2, QQ) # needs sage.modules sage: g = G([[1,1], [0,1]]) # needs sage.modules sage: g.conjugacy_class() # needs sage.groups sage.modules Conjugacy class of [1 1] [0 1] in Special Linear Group of degree 2 over Rational Field
>>> from sage.all import * >>> D = DihedralGroup(Integer(5)) # needs sage.groups >>> g = D((Integer(1),Integer(3),Integer(5),Integer(2),Integer(4))) # needs sage.groups >>> g.conjugacy_class() # needs sage.groups Conjugacy class of (1,3,5,2,4) in Dihedral group of order 10 as a permutation group >>> H = MatrixGroup([matrix(GF(Integer(5)), Integer(2), [Integer(1),Integer(2), -Integer(1),Integer(1)]), # needs sage.modules ... matrix(GF(Integer(5)), Integer(2), [Integer(1),Integer(1), Integer(0),Integer(1)])]) >>> h = H(matrix(GF(Integer(5)), Integer(2), [Integer(1),Integer(2), -Integer(1),Integer(1)])) # needs sage.modules >>> h.conjugacy_class() # needs sage.groups sage.modules Conjugacy class of [1 2] [4 1] in Matrix group over Finite Field of size 5 with 2 generators ( [1 2] [1 1] [4 1], [0 1] ) >>> G = SL(Integer(2), GF(Integer(2))) # needs sage.modules >>> g = G.gens()[Integer(0)] # needs sage.groups sage.modules >>> g.conjugacy_class() # needs sage.groups sage.modules Conjugacy class of [1 1] [0 1] in Special Linear Group of degree 2 over Finite Field of size 2 >>> G = SL(Integer(2), QQ) # needs sage.modules >>> g = G([[Integer(1),Integer(1)], [Integer(0),Integer(1)]]) # needs sage.modules >>> g.conjugacy_class() # needs sage.groups sage.modules Conjugacy class of [1 1] [0 1] in Special Linear Group of degree 2 over Rational Field
- Finite[source]#
alias of
FiniteGroups
- class ParentMethods[source]#
Bases:
object
- cayley_table(names='letters', elements=None)[source]#
Return the “multiplication” table of this multiplicative group, which is also known as the “Cayley table”.
Note
The order of the elements in the row and column headings is equal to the order given by the table’s
column_keys()
method. The association between the actual elements and the names/symbols used in the table can also be retrieved as a dictionary with thetranslation()
method.For groups, this routine should behave identically to the
multiplication_table()
method for magmas, which applies in greater generality.INPUT:
names
– the type of names used, values are:'letters'
– lowercase ASCII letters are used for a base 26 representation of the elements’ positions in the list given bylist()
, padded to a common width with leading ‘a’s.'digits'
– base 10 representation of the elements’ positions in the list given bycolumn_keys()
, padded to a common width with leading zeros.'elements'
– the string representations of the elements themselves.a list - a list of strings, where the length of the list equals the number of elements.
elements
– (default =None
); A list of elements of the group, in forms that can be coerced into the structure, eg. their string representations. This may be used to impose an alternate ordering on the elements, perhaps when this is used in the context of a particular structure. The default is to use whatever ordering is provided by the the group, which is reported by thecolumn_keys()
method. Or theelements
can be a subset which is closed under the operation. In particular, this can be used when the base set is infinite.
OUTPUT:
An object representing the multiplication table. This is an
OperationTable
object and even more documentation can be found there.EXAMPLES:
Permutation groups, matrix groups and abelian groups can all compute their multiplication tables.
sage: # needs sage.groups sage: G = DiCyclicGroup(3) sage: T = G.cayley_table() sage: T.column_keys() ((), (5,6,7), ..., (1,4,2,3)(5,7)) sage: T * a b c d e f g h i j k l +------------------------ a| a b c d e f g h i j k l b| b c a e f d i g h l j k c| c a b f d e h i g k l j d| d e f a b c j k l g h i e| e f d b c a l j k i g h f| f d e c a b k l j h i g g| g h i j k l d e f a b c h| h i g k l j f d e c a b i| i g h l j k e f d b c a j| j k l g h i a b c d e f k| k l j h i g c a b f d e l| l j k i g h b c a e f d
>>> from sage.all import * >>> # needs sage.groups >>> G = DiCyclicGroup(Integer(3)) >>> T = G.cayley_table() >>> T.column_keys() ((), (5,6,7), ..., (1,4,2,3)(5,7)) >>> T * a b c d e f g h i j k l +------------------------ a| a b c d e f g h i j k l b| b c a e f d i g h l j k c| c a b f d e h i g k l j d| d e f a b c j k l g h i e| e f d b c a l j k i g h f| f d e c a b k l j h i g g| g h i j k l d e f a b c h| h i g k l j f d e c a b i| i g h l j k e f d b c a j| j k l g h i a b c d e f k| k l j h i g c a b f d e l| l j k i g h b c a e f d
sage: M = SL(2, 2) # needs sage.modules sage: M.cayley_table() # needs sage.libs.gap sage.modules * a b c d e f +------------ a| a b c d e f b| b a d c f e c| c e a f b d d| d f b e a c e| e c f a d b f| f d e b c a
>>> from sage.all import * >>> M = SL(Integer(2), Integer(2)) # needs sage.modules >>> M.cayley_table() # needs sage.libs.gap sage.modules * a b c d e f +------------ a| a b c d e f b| b a d c f e c| c e a f b d d| d f b e a c e| e c f a d b f| f d e b c a <BLANKLINE>
sage: A = AbelianGroup([2, 3]) # needs sage.groups sage: A.cayley_table() # needs sage.groups * a b c d e f +------------ a| a b c d e f b| b c a e f d c| c a b f d e d| d e f a b c e| e f d b c a f| f d e c a b
>>> from sage.all import * >>> A = AbelianGroup([Integer(2), Integer(3)]) # needs sage.groups >>> A.cayley_table() # needs sage.groups * a b c d e f +------------ a| a b c d e f b| b c a e f d c| c a b f d e d| d e f a b c e| e f d b c a f| f d e c a b
Lowercase ASCII letters are the default symbols used for the table, but you can also specify the use of decimal digit strings, or provide your own strings (in the proper order if they have meaning). Also, if the elements themselves are not too complex, you can choose to just use the string representations of the elements themselves.
sage: C = CyclicPermutationGroup(11) # needs sage.groups sage: C.cayley_table(names='digits') # needs sage.groups * 00 01 02 03 04 05 06 07 08 09 10 +--------------------------------- 00| 00 01 02 03 04 05 06 07 08 09 10 01| 01 02 03 04 05 06 07 08 09 10 00 02| 02 03 04 05 06 07 08 09 10 00 01 03| 03 04 05 06 07 08 09 10 00 01 02 04| 04 05 06 07 08 09 10 00 01 02 03 05| 05 06 07 08 09 10 00 01 02 03 04 06| 06 07 08 09 10 00 01 02 03 04 05 07| 07 08 09 10 00 01 02 03 04 05 06 08| 08 09 10 00 01 02 03 04 05 06 07 09| 09 10 00 01 02 03 04 05 06 07 08 10| 10 00 01 02 03 04 05 06 07 08 09
>>> from sage.all import * >>> C = CyclicPermutationGroup(Integer(11)) # needs sage.groups >>> C.cayley_table(names='digits') # needs sage.groups * 00 01 02 03 04 05 06 07 08 09 10 +--------------------------------- 00| 00 01 02 03 04 05 06 07 08 09 10 01| 01 02 03 04 05 06 07 08 09 10 00 02| 02 03 04 05 06 07 08 09 10 00 01 03| 03 04 05 06 07 08 09 10 00 01 02 04| 04 05 06 07 08 09 10 00 01 02 03 05| 05 06 07 08 09 10 00 01 02 03 04 06| 06 07 08 09 10 00 01 02 03 04 05 07| 07 08 09 10 00 01 02 03 04 05 06 08| 08 09 10 00 01 02 03 04 05 06 07 09| 09 10 00 01 02 03 04 05 06 07 08 10| 10 00 01 02 03 04 05 06 07 08 09
sage: G = QuaternionGroup() # needs sage.groups sage: names = ['1', 'I', '-1', '-I', 'J', '-K', '-J', 'K'] sage: G.cayley_table(names=names) # needs sage.groups * 1 I -1 -I J -K -J K +------------------------ 1| 1 I -1 -I J -K -J K I| I -1 -I 1 K J -K -J -1| -1 -I 1 I -J K J -K -I| -I 1 I -1 -K -J K J J| J -K -J K -1 -I 1 I -K| -K -J K J I -1 -I 1 -J| -J K J -K 1 I -1 -I K| K J -K -J -I 1 I -1
>>> from sage.all import * >>> G = QuaternionGroup() # needs sage.groups >>> names = ['1', 'I', '-1', '-I', 'J', '-K', '-J', 'K'] >>> G.cayley_table(names=names) # needs sage.groups * 1 I -1 -I J -K -J K +------------------------ 1| 1 I -1 -I J -K -J K I| I -1 -I 1 K J -K -J -1| -1 -I 1 I -J K J -K -I| -I 1 I -1 -K -J K J J| J -K -J K -1 -I 1 I -K| -K -J K J I -1 -I 1 -J| -J K J -K 1 I -1 -I K| K J -K -J -I 1 I -1
sage: A = AbelianGroup([2, 2]) # needs sage.groups sage: A.cayley_table(names='elements') # needs sage.groups * 1 f1 f0 f0*f1 +------------------------ 1| 1 f1 f0 f0*f1 f1| f1 1 f0*f1 f0 f0| f0 f0*f1 1 f1 f0*f1| f0*f1 f0 f1 1
>>> from sage.all import * >>> A = AbelianGroup([Integer(2), Integer(2)]) # needs sage.groups >>> A.cayley_table(names='elements') # needs sage.groups * 1 f1 f0 f0*f1 +------------------------ 1| 1 f1 f0 f0*f1 f1| f1 1 f0*f1 f0 f0| f0 f0*f1 1 f1 f0*f1| f0*f1 f0 f1 1
The
change_names()
routine behaves similarly, but changes an existing table “in-place.”sage: # needs sage.groups sage: G = AlternatingGroup(3) sage: T = G.cayley_table() sage: T.change_names('digits') sage: T * 0 1 2 +------ 0| 0 1 2 1| 1 2 0 2| 2 0 1
>>> from sage.all import * >>> # needs sage.groups >>> G = AlternatingGroup(Integer(3)) >>> T = G.cayley_table() >>> T.change_names('digits') >>> T * 0 1 2 +------ 0| 0 1 2 1| 1 2 0 2| 2 0 1
For an infinite group, you can still work with finite sets of elements, provided the set is closed under multiplication. Elements will be coerced into the group as part of setting up the table.
sage: # needs sage.modules sage: G = SL(2,ZZ); G Special Linear Group of degree 2 over Integer Ring sage: identity = matrix(ZZ, [[1,0], [0,1]]) sage: G.cayley_table(elements=[identity, -identity]) * a b +---- a| a b b| b a
>>> from sage.all import * >>> # needs sage.modules >>> G = SL(Integer(2),ZZ); G Special Linear Group of degree 2 over Integer Ring >>> identity = matrix(ZZ, [[Integer(1),Integer(0)], [Integer(0),Integer(1)]]) >>> G.cayley_table(elements=[identity, -identity]) * a b +---- a| a b b| b a
The
OperationTable
class provides even greater flexibility, including changing the operation. Here is one such example, illustrating the computation of commutators.commutator
is defined as a function of two variables, before being used to build the table. From this, the commutator subgroup seems obvious, and creating a Cayley table with just these three elements confirms that they form a closed subset in the group.sage: # needs sage.groups sage.modules sage: from sage.matrix.operation_table import OperationTable sage: G = DiCyclicGroup(3) sage: commutator = lambda x, y: x*y*x^-1*y^-1 sage: T = OperationTable(G, commutator); T . a b c d e f g h i j k l +------------------------ a| a a a a a a a a a a a a b| a a a a a a c c c c c c c| a a a a a a b b b b b b d| a a a a a a a a a a a a e| a a a a a a c c c c c c f| a a a a a a b b b b b b g| a b c a b c a c b a c b h| a b c a b c b a c b a c i| a b c a b c c b a c b a j| a b c a b c a c b a c b k| a b c a b c b a c b a c l| a b c a b c c b a c b a sage: trans = T.translation() sage: comm = [trans['a'], trans['b'], trans['c']] sage: comm [(), (5,6,7), (5,7,6)] sage: P = G.cayley_table(elements=comm) sage: P * a b c +------ a| a b c b| b c a c| c a b
>>> from sage.all import * >>> # needs sage.groups sage.modules >>> from sage.matrix.operation_table import OperationTable >>> G = DiCyclicGroup(Integer(3)) >>> commutator = lambda x, y: x*y*x**-Integer(1)*y**-Integer(1) >>> T = OperationTable(G, commutator); T . a b c d e f g h i j k l +------------------------ a| a a a a a a a a a a a a b| a a a a a a c c c c c c c| a a a a a a b b b b b b d| a a a a a a a a a a a a e| a a a a a a c c c c c c f| a a a a a a b b b b b b g| a b c a b c a c b a c b h| a b c a b c b a c b a c i| a b c a b c c b a c b a j| a b c a b c a c b a c b k| a b c a b c b a c b a c l| a b c a b c c b a c b a >>> trans = T.translation() >>> comm = [trans['a'], trans['b'], trans['c']] >>> comm [(), (5,6,7), (5,7,6)] >>> P = G.cayley_table(elements=comm) >>> P * a b c +------ a| a b c b| b c a c| c a b
Todo
Arrange an ordering of elements into cosets of a normal subgroup close to size \(\sqrt{n}\). Then the quotient group structure is often apparent in the table. See comments on Issue #7555.
AUTHOR:
Rob Beezer (2010-03-15)
- conjugacy_class(g)[source]#
Return the conjugacy class of the element
g
.This is a fall-back method for groups not defined over GAP.
EXAMPLES:
sage: A = AbelianGroup([2, 2]) # needs sage.groups sage: c = A.conjugacy_class(A.an_element()) # needs sage.groups sage: type(c) # needs sage.groups <class 'sage.groups.conjugacy_classes.ConjugacyClass_with_category'>
>>> from sage.all import * >>> A = AbelianGroup([Integer(2), Integer(2)]) # needs sage.groups >>> c = A.conjugacy_class(A.an_element()) # needs sage.groups >>> type(c) # needs sage.groups <class 'sage.groups.conjugacy_classes.ConjugacyClass_with_category'>
- group_generators()[source]#
Return group generators for
self
.This default implementation calls
gens()
, for backward compatibility.EXAMPLES:
sage: A = AlternatingGroup(4) # needs sage.groups sage: A.group_generators() # needs sage.groups Family ((1,2,3), (2,3,4))
>>> from sage.all import * >>> A = AlternatingGroup(Integer(4)) # needs sage.groups >>> A.group_generators() # needs sage.groups Family ((1,2,3), (2,3,4))
- holomorph()[source]#
The holomorph of a group
The holomorph of a group \(G\) is the semidirect product \(G \rtimes_{id} Aut(G)\), where \(id\) is the identity function on \(Aut(G)\), the automorphism group of \(G\).
See Wikipedia article Holomorph (mathematics)
EXAMPLES:
sage: G = Groups().example() # needs sage.modules sage: G.holomorph() # needs sage.modules Traceback (most recent call last): ... NotImplementedError: holomorph of General Linear Group of degree 4 over Rational Field not yet implemented
>>> from sage.all import * >>> G = Groups().example() # needs sage.modules >>> G.holomorph() # needs sage.modules Traceback (most recent call last): ... NotImplementedError: holomorph of General Linear Group of degree 4 over Rational Field not yet implemented
- monoid_generators()[source]#
Return the generators of
self
as a monoid.Let \(G\) be a group with generating set \(X\). In general, the generating set of \(G\) as a monoid is given by \(X \cup X^{-1}\), where \(X^{-1}\) is the set of inverses of \(X\). If \(G\) is a finite group, then the generating set as a monoid is \(X\).
EXAMPLES:
sage: # needs sage.groups sage: A = AlternatingGroup(4) sage: A.monoid_generators() Family ((1,2,3), (2,3,4)) sage: F.<x,y> = FreeGroup() sage: F.monoid_generators() Family (x, y, x^-1, y^-1)
>>> from sage.all import * >>> # needs sage.groups >>> A = AlternatingGroup(Integer(4)) >>> A.monoid_generators() Family ((1,2,3), (2,3,4)) >>> F = FreeGroup(names=('x', 'y',)); (x, y,) = F._first_ngens(2) >>> F.monoid_generators() Family (x, y, x^-1, y^-1)
- semidirect_product(N, mapping, check=True)[source]#
The semi-direct product of two groups
EXAMPLES:
sage: G = Groups().example() # needs sage.modules sage: G.semidirect_product(G, Morphism(G, G)) # needs sage.modules Traceback (most recent call last): ... NotImplementedError: semidirect product of General Linear Group of degree 4 over Rational Field and General Linear Group of degree 4 over Rational Field not yet implemented
>>> from sage.all import * >>> G = Groups().example() # needs sage.modules >>> G.semidirect_product(G, Morphism(G, G)) # needs sage.modules Traceback (most recent call last): ... NotImplementedError: semidirect product of General Linear Group of degree 4 over Rational Field and General Linear Group of degree 4 over Rational Field not yet implemented
- class Topological(category, *args)[source]#
Bases:
TopologicalSpacesCategory
Category of topological groups.
A topological group \(G\) is a group which has a topology such that multiplication and taking inverses are continuous functions.
REFERENCES:
- example()[source]#
EXAMPLES:
sage: Groups().example() # needs sage.modules General Linear Group of degree 4 over Rational Field
>>> from sage.all import * >>> Groups().example() # needs sage.modules General Linear Group of degree 4 over Rational Field
- static free(index_set=None, names=None, **kwds)[source]#
Return the free group.
INPUT:
index_set
– (optional) an index set for the generators; if an integer, then this represents \(\{0, 1, \ldots, n-1\}\)names
– a string or list/tuple/iterable of strings (default:'x'
); the generator names or name prefix
When the index set is an integer or only variable names are given, this returns
FreeGroup_class
, which currently has more features due to the interface with GAP thanIndexedFreeGroup
.EXAMPLES:
sage: # needs sage.combinat sage.groups sage: Groups.free(index_set=ZZ) Free group indexed by Integer Ring sage: Groups().free(ZZ) Free group indexed by Integer Ring sage: Groups().free(5) Free Group on generators {x0, x1, x2, x3, x4} sage: F.<x,y,z> = Groups().free(); F Free Group on generators {x, y, z}
>>> from sage.all import * >>> # needs sage.combinat sage.groups >>> Groups.free(index_set=ZZ) Free group indexed by Integer Ring >>> Groups().free(ZZ) Free group indexed by Integer Ring >>> Groups().free(Integer(5)) Free Group on generators {x0, x1, x2, x3, x4} >>> F = Groups().free(names=('x', 'y', 'z',)); (x, y, z,) = F._first_ngens(3); F Free Group on generators {x, y, z}