Vector Spaces#
- class sage.categories.vector_spaces.VectorSpaces(K)[source]#
Bases:
Category_module
The category of (abstract) vector spaces over a given field
??? with an embedding in an ambient vector space ???
EXAMPLES:
sage: VectorSpaces(QQ) Category of vector spaces over Rational Field sage: VectorSpaces(QQ).super_categories() [Category of modules over Rational Field]
>>> from sage.all import * >>> VectorSpaces(QQ) Category of vector spaces over Rational Field >>> VectorSpaces(QQ).super_categories() [Category of modules over Rational Field]
- class CartesianProducts(category, *args)[source]#
Bases:
CartesianProductsCategory
- extra_super_categories()[source]#
The category of vector spaces is closed under Cartesian products:
sage: C = VectorSpaces(QQ) sage: C.CartesianProducts() Category of Cartesian products of vector spaces over Rational Field sage: C in C.CartesianProducts().super_categories() True
>>> from sage.all import * >>> C = VectorSpaces(QQ) >>> C.CartesianProducts() Category of Cartesian products of vector spaces over Rational Field >>> C in C.CartesianProducts().super_categories() True
- class DualObjects(category, *args)[source]#
Bases:
DualObjectsCategory
- extra_super_categories()[source]#
Returns the dual category
EXAMPLES:
The category of algebras over the Rational Field is dual to the category of coalgebras over the same field:
sage: C = VectorSpaces(QQ) sage: C.dual() Category of duals of vector spaces over Rational Field sage: C.dual().super_categories() # indirect doctest [Category of vector spaces over Rational Field]
>>> from sage.all import * >>> C = VectorSpaces(QQ) >>> C.dual() Category of duals of vector spaces over Rational Field >>> C.dual().super_categories() # indirect doctest [Category of vector spaces over Rational Field]
- class Filtered(base_category)[source]#
Bases:
FilteredModulesCategory
Category of filtered vector spaces.
- class FiniteDimensional(base_category)[source]#
Bases:
CategoryWithAxiom_over_base_ring
- class TensorProducts(category, *args)[source]#
Bases:
TensorProductsCategory
- extra_super_categories()[source]#
Implement the fact that a (finite) tensor product of finite dimensional vector spaces is a finite dimensional vector space.
EXAMPLES:
sage: VectorSpaces(QQ).FiniteDimensional().TensorProducts().extra_super_categories() [Category of finite dimensional vector spaces over Rational Field] sage: VectorSpaces(QQ).FiniteDimensional().TensorProducts().FiniteDimensional() Category of tensor products of finite dimensional vector spaces over Rational Field
>>> from sage.all import * >>> VectorSpaces(QQ).FiniteDimensional().TensorProducts().extra_super_categories() [Category of finite dimensional vector spaces over Rational Field] >>> VectorSpaces(QQ).FiniteDimensional().TensorProducts().FiniteDimensional() Category of tensor products of finite dimensional vector spaces over Rational Field
- class Graded(base_category)[source]#
Bases:
GradedModulesCategory
Category of graded vector spaces.
- class ParentMethods[source]#
Bases:
object
- dimension()[source]#
Return the dimension of this vector space.
EXAMPLES:
sage: M = FreeModule(FiniteField(19), 100) # needs sage.modules sage: W = M.submodule([M.gen(50)]) # needs sage.modules sage: W.dimension() # needs sage.modules 1 sage: M = FiniteRankFreeModule(QQ, 3) # needs sage.modules sage: M.dimension() # needs sage.modules 3 sage: M.tensor_module(1, 2).dimension() # needs sage.modules 27
>>> from sage.all import * >>> M = FreeModule(FiniteField(Integer(19)), Integer(100)) # needs sage.modules >>> W = M.submodule([M.gen(Integer(50))]) # needs sage.modules >>> W.dimension() # needs sage.modules 1 >>> M = FiniteRankFreeModule(QQ, Integer(3)) # needs sage.modules >>> M.dimension() # needs sage.modules 3 >>> M.tensor_module(Integer(1), Integer(2)).dimension() # needs sage.modules 27
- class TensorProducts(category, *args)[source]#
Bases:
TensorProductsCategory
- extra_super_categories()[source]#
The category of vector spaces is closed under tensor products:
sage: C = VectorSpaces(QQ) sage: C.TensorProducts() Category of tensor products of vector spaces over Rational Field sage: C in C.TensorProducts().super_categories() True
>>> from sage.all import * >>> C = VectorSpaces(QQ) >>> C.TensorProducts() Category of tensor products of vector spaces over Rational Field >>> C in C.TensorProducts().super_categories() True
- class WithBasis(base_category)[source]#
Bases:
CategoryWithAxiom_over_base_ring
- class CartesianProducts(category, *args)[source]#
Bases:
CartesianProductsCategory
- extra_super_categories()[source]#
The category of vector spaces with basis is closed under Cartesian products:
sage: C = VectorSpaces(QQ).WithBasis() sage: C.CartesianProducts() Category of Cartesian products of vector spaces with basis over Rational Field sage: C in C.CartesianProducts().super_categories() True
>>> from sage.all import * >>> C = VectorSpaces(QQ).WithBasis() >>> C.CartesianProducts() Category of Cartesian products of vector spaces with basis over Rational Field >>> C in C.CartesianProducts().super_categories() True
- class Filtered(base_category)[source]#
Bases:
FilteredModulesCategory
Category of filtered vector spaces with basis.
- example(base_ring=None)[source]#
Return an example of a graded vector space with basis, as per
Category.example()
.EXAMPLES:
sage: Modules(QQ).WithBasis().Graded().example() # needs sage.combinat sage.modules An example of a graded module with basis: the free module on partitions over Rational Field
>>> from sage.all import * >>> Modules(QQ).WithBasis().Graded().example() # needs sage.combinat sage.modules An example of a graded module with basis: the free module on partitions over Rational Field
- class FiniteDimensional(base_category)[source]#
Bases:
CategoryWithAxiom_over_base_ring
- class TensorProducts(category, *args)[source]#
Bases:
TensorProductsCategory
- extra_super_categories()[source]#
Implement the fact that a (finite) tensor product of finite dimensional vector spaces is a finite dimensional vector space.
EXAMPLES:
sage: VectorSpaces(QQ).WithBasis().FiniteDimensional().TensorProducts().extra_super_categories() [Category of finite dimensional vector spaces with basis over Rational Field] sage: VectorSpaces(QQ).WithBasis().FiniteDimensional().TensorProducts().FiniteDimensional() Category of tensor products of finite dimensional vector spaces with basis over Rational Field
>>> from sage.all import * >>> VectorSpaces(QQ).WithBasis().FiniteDimensional().TensorProducts().extra_super_categories() [Category of finite dimensional vector spaces with basis over Rational Field] >>> VectorSpaces(QQ).WithBasis().FiniteDimensional().TensorProducts().FiniteDimensional() Category of tensor products of finite dimensional vector spaces with basis over Rational Field
- class Graded(base_category)[source]#
Bases:
GradedModulesCategory
Category of graded vector spaces with basis.
- example(base_ring=None)[source]#
Return an example of a graded vector space with basis, as per
Category.example()
.EXAMPLES:
sage: Modules(QQ).WithBasis().Graded().example() # needs sage.combinat sage.modules An example of a graded module with basis: the free module on partitions over Rational Field
>>> from sage.all import * >>> Modules(QQ).WithBasis().Graded().example() # needs sage.combinat sage.modules An example of a graded module with basis: the free module on partitions over Rational Field
- class TensorProducts(category, *args)[source]#
Bases:
TensorProductsCategory
- extra_super_categories()[source]#
The category of vector spaces with basis is closed under tensor products:
sage: C = VectorSpaces(QQ).WithBasis() sage: C.TensorProducts() Category of tensor products of vector spaces with basis over Rational Field sage: C in C.TensorProducts().super_categories() True
>>> from sage.all import * >>> C = VectorSpaces(QQ).WithBasis() >>> C.TensorProducts() Category of tensor products of vector spaces with basis over Rational Field >>> C in C.TensorProducts().super_categories() True
- additional_structure()[source]#
Return
None
.Indeed, the category of vector spaces defines no additional structure: a bimodule morphism between two vector spaces is a vector space morphism.
See also
Todo
Should this category be a
CategoryWithAxiom
?EXAMPLES:
sage: VectorSpaces(QQ).additional_structure()
>>> from sage.all import * >>> VectorSpaces(QQ).additional_structure()