Graded Lie Conformal Algebras¶
AUTHORS:
Reimundo Heluani (2019-10-05): Initial implementation.
- class sage.categories.graded_lie_conformal_algebras.GradedLieConformalAlgebras(base_category)[source]¶
Bases:
GradedLieConformalAlgebrasCategory
The category of graded Lie conformal algebras.
EXAMPLES:
sage: C = LieConformalAlgebras(QQbar).Graded(); C # needs sage.rings.number_field Category of H-graded Lie conformal algebras over Algebraic Field sage: CS = LieConformalAlgebras(QQ).Graded().Super(); CS Category of H-graded super Lie conformal algebras over Rational Field sage: CS is LieConformalAlgebras(QQ).Super().Graded() True
>>> from sage.all import * >>> C = LieConformalAlgebras(QQbar).Graded(); C # needs sage.rings.number_field Category of H-graded Lie conformal algebras over Algebraic Field >>> CS = LieConformalAlgebras(QQ).Graded().Super(); CS Category of H-graded super Lie conformal algebras over Rational Field >>> CS is LieConformalAlgebras(QQ).Super().Graded() True
- class sage.categories.graded_lie_conformal_algebras.GradedLieConformalAlgebrasCategory(base_category)[source]¶
Bases:
GradedModulesCategory
- Super(base_ring=None)[source]¶
Return the super-analogue category of
self
.INPUT:
base_ring
– this is ignored
EXAMPLES:
sage: # needs sage.rings.number_field sage: C = LieConformalAlgebras(QQbar) sage: C.Graded().Super() is C.Super().Graded() True sage: Cp = C.WithBasis() sage: Cp.Graded().Super() is Cp.Super().Graded() True
>>> from sage.all import * >>> # needs sage.rings.number_field >>> C = LieConformalAlgebras(QQbar) >>> C.Graded().Super() is C.Super().Graded() True >>> Cp = C.WithBasis() >>> Cp.Graded().Super() is Cp.Super().Graded() True